Skip to main content

Shock in the Cardiac Patient: A Brief Overview

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease

Abstract

Shock is a situation of circulatory failure characterized by a generalized and severe decrease of tissue oxygen and nutrient delivery. Shock, whatever the etiology, induces reversible and later irreversible cell lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References and Further Recommended Reading

  1. Michard F, Teboul JL, Richard C. Influence of tidal volume on stroke volume variation. Does it really matter? Intensive Care Med. 2003;29:1613.

    Article  PubMed  Google Scholar 

  2. Carcillo JA, Davis AL, Zaritsky A. Role of early fluid resuscitation in pediatric septic shock. JAMA. 1991;266:1242–1245.

    Article  PubMed  CAS  Google Scholar 

  3. Carcillo JA, Fields AI. American College of Critical Care Medicine Task Force Committee Members. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med. 2002;30:1365–1378.

    Article  PubMed  Google Scholar 

  4. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–289.

    Article  PubMed  CAS  Google Scholar 

  5. Tibby SM, Hatherill M, Marsch MJ, Morrison G, Anderson D, Murdoch IA. Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med. 1997;23:987–991.

    Article  PubMed  CAS  Google Scholar 

  6. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29:352–360.

    Article  PubMed  Google Scholar 

  7. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Resp Crit Care Med. 2000;162:134–138.

    PubMed  CAS  Google Scholar 

  8. Schiffmann H, Erdlenbruch B, Singer D, et al. Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J Cardiothor Vasc Anest. 2002;16:592–597.

    Article  Google Scholar 

  9. Reuter D, Bayerlein J, Goepfert MSG, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Int Care Med. 2003;29:476–480.

    Google Scholar 

  10. Tibby SM, Hatherill M, Marsh MJ, Murdoch IA. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child. 1997;77:516–518.

    Article  PubMed  CAS  Google Scholar 

  11. Tibby SM, Hatherill M, Murdoch IA. Capillary refill and core-peripheral temperature gap as indicators of haemodynamic status in paediatric intensive care patients. Intensive Care Med. 1999;80:163–166.

    CAS  Google Scholar 

  12. Vieillard-Baron A, Chergui K, Augarde R, et al. Cyclic changes in arterial pulse during respiratory support revisited by doppler echocardiographxy. Am J Resp Crit Care Med. 2003;168:671–676.

    Article  PubMed  Google Scholar 

  13. Denault AY, Gorcsan J, Pinsky MR. Dynamic effects of positive-pressure ventilation on canine left ventricular pressure-volume relations. J Appl Physiol. 2001;91:298–308.

    PubMed  CAS  Google Scholar 

  14. Shekerdemian L, Bohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80:475–480.

    Article  PubMed  CAS  Google Scholar 

  15. Shekerdemian L, Bush A, Shore DF, Lincoln C, Redington AN. Cardiorespiratory responses to negative pressure ventilation after tetralogy of Fallot repair: a hemodynamic tool for patients with a low-ouput state. J Am Coll Cardiol. 1999;33:549–555.

    Article  PubMed  CAS  Google Scholar 

  16. Tibby SM, Murdoch IA. Monitoring cardiac function in intensive care. Arch Dis Child. 2003;88:46–52.

    Article  PubMed  CAS  Google Scholar 

  17. Sherkerdemian L, Shore DF, Lincoln C, Bush A, Redington AN. Negative-pressure ventilation improves cardiac output after right heart surgery. Circulation. 1996;94(suppl II):II49–II55.

    Google Scholar 

  18. Shekerdemian L, Schulze-Neick I, Redington AN, Bush A, Penny DJ. Negative pressure ventilation as haemodynamic rescue following surgery for congenital heart disease. Intensive Care Med. 2000;26:93–96.

    Article  PubMed  CAS  Google Scholar 

  19. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest. 2002;121:2000–2008.

    Article  PubMed  Google Scholar 

  20. Pinsky MR. Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg. 2003;96:1245–1247.

    Article  PubMed  Google Scholar 

  21. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–873.

    Article  PubMed  CAS  Google Scholar 

  22. Slama M, Masson H, Teboul JL, et al. Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol. 2002;283:1729–1733.

    Google Scholar 

  23. Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 2003;29:1426–1434.

    Article  PubMed  Google Scholar 

  24. Wiesenack C, Prasser C, Rodig G, Keyl C. Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg. 2003;96:1254–1257.

    Article  PubMed  Google Scholar 

  25. Michard F. Underutilized tools for the assessment of intravascular volume status. Chest. 2003;124:414–416.

    Article  PubMed  Google Scholar 

  26. Janousek J, Tomek V, Chaloupecky V, et al. Dilated cardiomyopathy associated with dual-chamber pacing in infants: improvement through either left ventricular cardiac resynchronisation or programming off allowing intrinsic normal conduction. J Cardiovasc Electrophysiol. 2004;15:470–474.

    Article  PubMed  Google Scholar 

  27. Dodge-Khatami A, Kadner A, Dave H, et al. Left heart atrial and ventricular epicardial pacing through a left lateral thoracotomy in children: a safe approach with excellent functional and cosmetic results. Eur J Cardiothorac Surg. 2005;28:541–545.

    Article  PubMed  Google Scholar 

  28. Vanagt WY, Verbeek XA, Delhaas T, et al. Acute hemodynamic benefit of left ventricular apex pacing in children. Ann Thorac Surg. 2005;79:932–936.

    Article  PubMed  Google Scholar 

  29. Tobin MJ. Critical care medicine in AJRCCM 2000. Am J Respir Crit Care Med. 2001;164:1347–1361.

    PubMed  CAS  Google Scholar 

  30. Tibby SM, Murdoch IA. Monitoring cardiac function in intensive care. Arch Dis Child. 2003;88:46–52.

    Article  PubMed  CAS  Google Scholar 

  31. Bendjelid K, Suter PM, Romand JA. The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol. 2004;96:337–342.

    Article  PubMed  Google Scholar 

  32. Fessler HE. Heart-lung interactions: applications in the critically ill. Eur Respir J. 1997;10:226–237.

    Article  PubMed  CAS  Google Scholar 

  33. Shekerdemian L, Bush A, Shore DF, Lincoln C, Redington AN. Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation. 1999;100:211–212.

    Article  PubMed  Google Scholar 

  34. Kocis KC, Meliones JN. Cardiopulmonary interactions in children with congenital heart disease: physiology and clinical correlates. Prog Pediatr Cardiol. 2000;11:203–210.

    Article  PubMed  Google Scholar 

  35. Mace L, Dervanian P, Neveux JY. Cardiopulmonary interactions after Fontan operations. Circulation. 1999;100:211–212.

    Article  PubMed  CAS  Google Scholar 

  36. Botte A, Leclerc F, Riou Y, Sadik A, Neve V, Rakza T, Richard A. Evaluation of a noninvasive cardiac output monitor in mechanically ventilated children. Pediatr Crit Care Med 2006;7:231–236.

    Google Scholar 

  37. Klinger JR, Thaker S, Houtchens J, Preston JR, Hill NS, Farber HW. Pulmonary hemodynamic responses to brain natriuretic peptide and sildenafil in patients with pulmonary arterial hypertension. Chest. 2006;129:417–425.

    Article  PubMed  CAS  Google Scholar 

  38. Kuzkov VV, Suborov EV, Kirov MY, Kuklin VN, Sobhkhez M, Johnsen S, Waerhaug K, Bjertnaes LJ. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med 2007;35:1550–1559.

    Google Scholar 

  39. Tortoriello TA, Stayer SA, Mott AR, et al. A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth. 2005;15:495–503.

    Article  PubMed  Google Scholar 

  40. Nollert G, et al. Near-infrared spectrophotometry of the brain in cardiovascular surgery. J Thorac Cardiovasc Surg. 1998;46:167–175.

    Article  CAS  Google Scholar 

  41. McCormick PW, Stewart M, Goetting MG, et al. Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics. Crit Care Med. 1991;19:89–97.

    Article  PubMed  CAS  Google Scholar 

  42. Dullenkopf A, Frey B, Baenziger O, et al. Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5001 cerebral oximeter. Paediatr Anaesth. 2003;13:384–391.

    Article  PubMed  Google Scholar 

  43. Schranz D, Schmitt S, Oelert H, et al. Continuous monitoring of mixed venous oxygen saturation in infants after cardiac surgery. Intensive Care Med. 1989;15:228.

    Article  PubMed  CAS  Google Scholar 

  44. Baldasso E, Ramos Garcia PC, Piva JP, Einloff PR. Hemodynamic and metabolic effects of vasopressin infusion in children with shock. J Pediatr (Rio J). 2007;83(suppl 5):S137–S145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. da Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

da Cruz, E.M., Kaufman, J. (2009). Shock in the Cardiac Patient: A Brief Overview. In: Munoz, R., Morell, V., Cruz, E., Vetterly, C. (eds) Critical Care of Children with Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84882-262-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-262-7_50

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-261-0

  • Online ISBN: 978-1-84882-262-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics