Skip to main content

Chronic Pulmonary Hypertension

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease
  • 3801 Accesses

Abstract

This chapter discusses the anatomical and physiological basis for chronic pulmonary arterial hypertension, its diagnosis and management. Pulmonary arterial hypertension (PAH) can lead to significant cardiac dysfunction and is associated with an increased risk of perioperative cardiovascular complications [1]. The selection of appropriate therapies is complex, requiring familiarity with the underlying disease process, complicated delivery systems, dosing regimens, and medication complications [2]. Recent therapeutic and surgical advances in the management of PAH have led to an improvement in prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmosino MJ, et al. Perioperative complications in children with pulmonary hypertension undergoing noncardiac surgery or cardiac catheterization. Anesth Analg. 2007;104(3):521–527.

    Article  PubMed  Google Scholar 

  2. Badesch DB, et al. Medical therapy for pulmonary arterial hypertension: updated ACCP evidence-based clinical practice guidelines. Chest. 2007;131(6):1917–1928.

    Article  PubMed  Google Scholar 

  3. Rich S, ed. Primary Pulmonary hypertension. Executive Summary from the World Symposium. Primary Pulmonary Hypertension. World Health Orgnization, 1998.

    Google Scholar 

  4. Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT) Eur Heart J. 2009 Aug 27. [Epub ahead of print].

    Google Scholar 

  5. Rabinovitch M. Pulmonary hypertension: pathophysiology as a basis for clinical decision making. J Heart Lung Transplant. 1999;18(11):1041–1053.

    CAS  Google Scholar 

  6. Rubin LJ. Primary pulmonary hypertension. N Engl J Med. 1997;336(2):111–117.

    Article  PubMed  CAS  Google Scholar 

  7. Voelkel NF, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–1891.

    Article  PubMed  Google Scholar 

  8. MacLean MR. Pulmonary hypertension and the serotonin hypothesis: where are we now?. Int J Clin Prac. 2007;61(15):27–31.

    Article  CAS  Google Scholar 

  9. Bonnet S, Archer SL. Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Pharmacol Ther. 2007;115(1):56–69.

    Article  PubMed  CAS  Google Scholar 

  10. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet. 2003;361(9368):1533–1544.

    Article  PubMed  Google Scholar 

  11. Heath D, et al. The pathology of the early and late stages of primary pulmonary hypertension. Br Heart J. 1987;58(3):204–213.

    Article  PubMed  CAS  Google Scholar 

  12. Cool CD, et al. Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol. 1999;155(2):411–419.

    Article  PubMed  CAS  Google Scholar 

  13. Masri FA, et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2007;293:L548–L554.

    Article  PubMed  CAS  Google Scholar 

  14. Rabinovitch M. EVE and beyond, retro and prospective insights. Am J Physiol. 1999;277(1 Pt 1):L5–L12.

    PubMed  CAS  Google Scholar 

  15. Haworth SG. Role of the endothelium in pulmonary arterial hypertension. Vascul Pharmacol. 2006;45:317–325.

    Article  PubMed  CAS  Google Scholar 

  16. Weinberg CE, et al. Extraction of pulmonary vascular compliance, pulmonary vascular resistance, and right ventricular work from single-pressure and Doppler flow measurements in children with pulmonary hypertension: a new method for evaluating reactivity: in vitro and clinical studies. Circulation. 2004;110(17):2609–2617.

    Article  PubMed  Google Scholar 

  17. Mahapatra S, et al. Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol. 2006;47(4):799–803.

    Article  PubMed  Google Scholar 

  18. Karamanoglu M, et al. Right ventricular pressure waveform and wave reflection analysis in patients with pulmonary arterial hypertension. Chest. 2007;132(1):37–43.

    Article  PubMed  Google Scholar 

  19. Mahapatra S, et al. The prognostic value of pulmonary vascular capacitance determined by Doppler echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr. 2006;19(8):1045–1050.

    Article  PubMed  Google Scholar 

  20. Widlitz A, Barst RJ. Pulmonary arterial hypertension in children. Eur Respir J. 2003;21(1):155–176.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenzweig EB, Barst RJ. Idiopathic pulmonary arterial hypertension in children. Curr Opin Pediatr. 2005;17(3):372–380.

    Article  PubMed  Google Scholar 

  22. Beghetti M. Congenital heart disease and pulmonary hypertension. Rev Port Cardiol. 2004;23(2):273–281.

    PubMed  Google Scholar 

  23. Rich S, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987;107(2):216–223.

    PubMed  CAS  Google Scholar 

  24. Schmidt HC, et al. Pulmonary hypertension in patients with chronic pulmonary thromboembolism: chest radiograph and CT evaluation before and after surgery. Eur Radiol. 1996;6(6):817–825.

    Article  PubMed  CAS  Google Scholar 

  25. Kim WS, et al. Radiological evaluation of pulmonary vein obstruction including two examinations by magnetic resonance imaging. Pediatr Radiol. 1993;23(1):6–11.

    Article  PubMed  CAS  Google Scholar 

  26. Woodruff WW III, et al. Radiographic findings in pulmonary hypertension from unresolved embolism. AJR Am J Roentgenol. 1985;144(4):681–686.

    PubMed  Google Scholar 

  27. Tissot C, et al. Bronchoscopic diagnosis of unilateral pulmonary vein atresia. Ped Cardiol. 2008;29(5):976–9.

    Article  Google Scholar 

  28. Puchalski MD, et al. Electrocardiography in the diagnosis of right ventricular hypertrophy in children. Pediatrics. 2006;118(3):1052–1055.

    Article  PubMed  Google Scholar 

  29. Ivy D. Echocardiographic evaluation of pulmonary hypertension. In: Valdes-Cruz LM, Cayre RO, eds. Echocardiographic Diagnosis of Congenital Heart Disease. An Embryologic and Anatomic Approach. Philadelphia: Lippincott Williams & Wilkins; 1999:537–547.

    Google Scholar 

  30. Borgeson DD, et al. Frequency of Doppler measurable pulmonary artery pressures. J Am Soc Echocardiogr. 1996;9(6):832–837.

    Article  PubMed  CAS  Google Scholar 

  31. Hinderliter AL, et al. Effects of long-term infusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Primary pulmonary hypertension study group. Circulation. 1997;95(6):1479–1486.

    Article  PubMed  CAS  Google Scholar 

  32. Denton CP, et al. Comparison of Doppler echocardiography and right heart catheterization to assess pulmonary hypertension in systemic sclerosis. Br J Rheumatol. 1997;36(2):239–243.

    Article  PubMed  CAS  Google Scholar 

  33. Kim WR, et al. Accuracy of Doppler echocardiography in the assessment of pulmonary hypertension in liver transplant candidates. Liver Transpl. 2000;6(4):453–458.

    Article  PubMed  Google Scholar 

  34. Brecker SJ, et al. Comparison of Doppler derived haemodynamic variables and simultaneous high fidelity pressure measurements in severe pulmonary hypertension. Br Heart J. 1994;72(4):384–389.

    Article  PubMed  CAS  Google Scholar 

  35. Penning S, et al. A comparison of echocardiography and pulmonary artery catheterization for evaluation of pulmonary artery pressures in pregnant patients with suspected pulmonary hypertension. Am J Obstet Gynecol. 2001;184(7):1568–1570.

    Article  PubMed  CAS  Google Scholar 

  36. Pilatis ND, et al. Clinical predictors of pulmonary hypertension in patients undergoing liver transplant evaluation. Liver Transpl. 2000;6(1):85–91.

    PubMed  CAS  Google Scholar 

  37. Torregrosa M, et al. Role of Doppler echocardiography in the assessment of portopulmonary hypertension in liver transplantation candidates. Transplantation. 2001;71(4):572–574.

    Article  PubMed  CAS  Google Scholar 

  38. Chen WJ, et al. Detection of cardiovascular shunts by transesophageal echocardiography in patients with pulmonary hypertension of unexplained cause. Chest. 1995;107(1):8–13.

    Article  PubMed  CAS  Google Scholar 

  39. Boehrer JD, et al. Advantages and limitations of methods to detect, localize, and quantitate intracardiac right-to-left and bidirectional shunting. Am Heart J. 1993;125(1):215–220.

    Article  PubMed  CAS  Google Scholar 

  40. Dyer KL, et al. Use of myocardial performance index in pediatric patients with idiopathic pulmonary arterial hypertension. J Am Soc Echocardiogr. 2006;19(1):21–27.

    Article  PubMed  Google Scholar 

  41. Shyu KG, et al. Diagnostic accuracy of transesophageal echocardiography for detecting patent ductus arteriosus in adolescents and adults. Chest. 1995;108(5):1201–1205.

    Article  PubMed  CAS  Google Scholar 

  42. Wittlich N, et al. Detection of central pulmonary artery thromboemboli by transesophageal echocardiography in patients with severe pulmonary embolism. J Am Soc Echocardiogr. 1992;5(5):515–524.

    PubMed  CAS  Google Scholar 

  43. Pruszczyk P, et al. Noninvasive diagnosis of suspected severe pulmonary embolism: transesophageal echocardiography vs spiral CT. Chest. 1997;112(3):722–728.

    Article  PubMed  CAS  Google Scholar 

  44. Nakayama Y, et al. Noninvasive differential diagnosis between chronic pulmonary thromboembolism and primary pulmonary hypertension by means of Doppler ultrasound measurement. J Am Coll Cardiol. 1998;31(6):1367–1371.

    Article  PubMed  CAS  Google Scholar 

  45. Dyer K, et al. Noninvasive Doppler tissue measurement of pulmonary artery compliance in children with pulmonary hypertension. J Am Soc Echocardiogr. 2006;19(4):403–412.

    Article  PubMed  Google Scholar 

  46. Lankhaar JW, et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2006;291(4):H1731–H1737.

    Article  PubMed  CAS  Google Scholar 

  47. Hunter KS, et al. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than PVR alone in pediatric patients with pulmonary hypertension. Am Heart J. 2008;155:166–174.

    Article  PubMed  Google Scholar 

  48. Apfel HD, et al. Quantitative three dimensional echocardiography in patients with pulmonary hypertension and compressed left ventricles: Comparison with cross sectional echocardiography and magnetic resonance imaging. Heart. 1996;76(4):350–354.

    Article  PubMed  CAS  Google Scholar 

  49. Nagendran J, Michelakis E. MRI: one-stop shop for the comprehensive assessment of pulmonary arterial hypertension? Chest. 2007;132(1):2–5.

    Article  PubMed  Google Scholar 

  50. McCann GP, et al. Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am J Roentgenol. 2007;188(2):349–355.

    Article  PubMed  Google Scholar 

  51. Ley S, et al. Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension. Eur Radiol. 2007;17(7):1892–1897.

    Article  PubMed  Google Scholar 

  52. Yetman AT, et al. Utility of cardiopulmonary stress testing in assessing disease severity in children with pulmonary arterial hypertension. Am J Cardiol. 2005;95(5):697–699.

    Article  PubMed  Google Scholar 

  53. Ivy DD, et al. Weaning and discontinuation of epoprostenol in children with idiopathic pulmonary arterial hypertension receiving concomitant bosentan. Am J Cardiol. 2004;93(7):943–946.

    Article  PubMed  CAS  Google Scholar 

  54. Nixon PA, Joswiak ML, Fricker FJ. A six-minute walk test for assessing exercise tolerance in severely ill children. J Pediatr. 1996;129(3):362–366.

    Article  PubMed  CAS  Google Scholar 

  55. Barst RJ. Recent advances in the treatment of pediatric pulmonary artery hypertension. Pediatr Clin North Am. 1999;46((2):331–345.

    Article  PubMed  CAS  Google Scholar 

  56. Rashid A, Ivy D. Severe paediatric pulmonary hypertension: new management strategies. Arch Dis Child. 2005;90(1):92–98.

    Article  PubMed  CAS  Google Scholar 

  57. Rashid A, Ivy DD. Pulmonary hypertension in children. Current Paediatrics. 2006;16:237–247.

    Article  Google Scholar 

  58. Das BB, et al. High-altitude pulmonary edema in children with underlying cardiopulmonary disorders and pulmonary hypertension living at altitude. Arch Pediatr Adolesc Med. 2004;158(12):1170–1176.

    Article  PubMed  Google Scholar 

  59. Condino AA, et al. Portopulmonary hypertension in pediatric patients. J Pediatr. 2005;147(1):20–26.

    Article  PubMed  Google Scholar 

  60. Abdalla SA, et al. Primary pulmonary hypertension in families with hereditary haemorrhagic telangiectasia. Eur Respir J. 2004;23(3):373–377.

    Article  PubMed  CAS  Google Scholar 

  61. Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med. 2004;351(14):1425–1436.

    Article  PubMed  CAS  Google Scholar 

  62. D’Alonzo GE, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–349.

    PubMed  Google Scholar 

  63. Yung D, et al. Outcomes in children with idiopathic pulmonary arterial hypertension. Circulation. 2004;110(6):660–665.

    Article  PubMed  Google Scholar 

  64. Barst RJ. Pharmacologically induced pulmonary vasodilatation in children and young adults with primary pulmonary hypertension. Chest. 1986;89(4):497–503.

    Article  PubMed  CAS  Google Scholar 

  65. Barst RJ. Recent advances in the treatment of pediatric pulmonary artery hypertension. Pediatr Clin North Am. 1999;46(2):331–345.

    Article  PubMed  CAS  Google Scholar 

  66. Barst RJ, Maislin G, Fishman AP. Vasodilator therapy for primary pulmonary hypertension in children. Circulation. 1999;99(9):1197–1208.

    Article  PubMed  CAS  Google Scholar 

  67. Loyd JE, Butler MG, Foroud TM. Genetic anticipation and abnormal gender ratio at birth in familial primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;152:93–97.

    PubMed  CAS  Google Scholar 

  68. Harrison RE, et al. Transforming growth factor-beta receptor mutations and pulmonary arterial hypertension in childhood. Circulation. 2005;111(4):435–441.

    Article  PubMed  CAS  Google Scholar 

  69. Grunig E, et al. Primary pulmonary hypertension in children may have a different genetic background than in adults. Pediatr Res. 2004;56(4):571–578.

    Article  PubMed  Google Scholar 

  70. Lane KB, Machado RD, Pauciulo MW, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-B receptor cause familial primary pulmonary hypertension. Nat Genet. 2000;26(1):81–84.

    Article  PubMed  CAS  Google Scholar 

  71. Deng Z, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000;67(3):737–744.

    Article  PubMed  CAS  Google Scholar 

  72. Machado RD, et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet. 2001;68(1):92–102.

    Article  PubMed  CAS  Google Scholar 

  73. Trembath RC, Harrison R. Insights into the genetic and molecular basis of primary pulmonary hypertension. Pediatr Res. 2003;53(6):883–888.

    Article  PubMed  Google Scholar 

  74. Harrison RE, et al. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J Med Genet. 2003;40(12):865–871.

    Article  PubMed  CAS  Google Scholar 

  75. Roberts KE, et al. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J. 2004;24(3):371–374.

    Article  PubMed  CAS  Google Scholar 

  76. Eddahibi S, Adnot S. The serotonin pathway in pulmonary hypertension. Arch Mal Coeur Vaiss. 2006;99(6):621–625.

    PubMed  CAS  Google Scholar 

  77. Vachharajani A, Saunders S. Allelic variation in the serotonin transporter (5HTT) gene contributes to idiopathic pulmonary hypertension in children. Biochem Biophys Res Commun. 2005;334(2):376–379.

    Article  PubMed  CAS  Google Scholar 

  78. McMahon CJ, et al. Preterm infants with congenital heart disease and bronchopulmonary dysplasia: postoperative course and outcome after cardiac surgery. Pediatrics. 2005;116(2):423–430.

    Article  PubMed  Google Scholar 

  79. Berman EB, Barst RJ. Eisenmenger’s syndrome: current management. Prog Cardiovasc Dis. 2002;45(2):129–138.

    Article  PubMed  Google Scholar 

  80. Perloff JK, Marelli AJ, Miner PD. Risk of stroke in adults with cyanotic congenital heart disease. Circulation. 1993;87(6):1954–1959.

    Article  PubMed  CAS  Google Scholar 

  81. Gladwin MT, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med. 2004;350(9):886–895.

    Article  PubMed  CAS  Google Scholar 

  82. Kato GJ, Onyekwere OC, Gladwin MT. Pulmonary hypertension in sickle cell disease: Relevance to children. Pediatr Hematol Oncol. 2007;24(3):159–170.

    Article  PubMed  Google Scholar 

  83. Gladwin MT, Kato GJ. Cardiopulmonary complications of sickle cell disease: role of nitric oxide and hemolytic anemia. Hematology Am Soc Hematol Educ Program; 2005:51–57.

    Google Scholar 

  84. Minneci PC, et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest. 2005;115(12):3409–3417.

    Article  PubMed  CAS  Google Scholar 

  85. Castro O, Gladwin MT. Pulmonary hypertension in sickle cell disease: mechanisms, diagnosis, and management. Hematol Oncol Clin North Am. 2005; 19(5): 881–896, vii.

    Article  PubMed  Google Scholar 

  86. Sachdev V, et al. Diastolic dysfunction is an independent risk factor for death in patients with sickle cell disease. J Am Coll Cardiol. 2007;49(4):472–479.

    Article  PubMed  Google Scholar 

  87. Abman SH, Groothius JR. Pathophysiology and treatment of bronchopulmonary dysplasia. Pediatr Clin North Am. 1994;41(2):277–315.

    PubMed  CAS  Google Scholar 

  88. Parker TA, Abman SH. The pulmonary circulation in bronchopulmonary dysplasia. Semin Neonatol. 2003;8:51–62.

    Article  PubMed  Google Scholar 

  89. Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–985.

    Article  PubMed  CAS  Google Scholar 

  90. Walsh MC, et al. Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics. 2006;117(3 Pt 2):S52–S56.

    PubMed  Google Scholar 

  91. Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol. 2005;67:623–661.

    Article  PubMed  CAS  Google Scholar 

  92. Kinsella JP, Ivy DD, Abman SH. Pulmonary vasodilator therapy in congenital diaphragmatic hernia: acute, late, and chronic pulmonary hypertension. Semin Perinatol. 2005;29(2):123–128.

    Article  PubMed  Google Scholar 

  93. Auger WR, Channick RN, Kerr KM, et al. Evaluation of patients with suspected chronic thromboembolic pulmonary hypertension. Semin Thorac Cardiovasc Surg. 1999;11:179–190.

    PubMed  CAS  Google Scholar 

  94. Barst RJ, et al. Pharmacokinetics, safety, and efficacy of bosentan in pediatric patients with pulmonary arterial hypertension. Clin Pharmacol Ther. 2003;73(4):372–382.

    Article  PubMed  CAS  Google Scholar 

  95. Rimensberger PC, et al. Inhaled nitric oxide versus aerosolized iloprost in secondary pulmonary hypertension in children with congenital heart disease: vasodilator capacity and cellular mechanisms. Circulation. 2001;103(4):544–548.

    Article  PubMed  CAS  Google Scholar 

  96. Atz AM, Adatia I, Lock JE, et al. Combined effects of nitric oxide and oxygen during acute pulmonary vasodilator testing. J Am Coll Cardiol. 1999;33(3):813–819.

    Article  PubMed  CAS  Google Scholar 

  97. Atz AM, Wessel DL. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology. 1999;91:307–310.

    Article  PubMed  CAS  Google Scholar 

  98. Pepke-Zaba J, Higenbottam TW, Dinh-Xaun AT, et al. Inhaled nitric oxide as a cause of selective pulomonary vasodilatation in pulmonary hypertension. Lancet. 1991;338:1173–1174.

    Article  PubMed  CAS  Google Scholar 

  99. Ivy DD, et al. Atrial natriuretic peptide and nitric oxide in children with pulmonary hypertension after surgical repair of congenital heart disease. Am J Cardiol. 1996;77(1):102–105.

    Article  PubMed  CAS  Google Scholar 

  100. Ivy DD, Parker D, Doran A, Kinsella JP, Abman SH. Acute hemodynamic effects and home therapy using novel pulsed nasal nitric oxide delivery system in children and young 1adults with pulmonary hypertension. Am J Cardiol. 2003;92:886–890.

    Article  PubMed  CAS  Google Scholar 

  101. Ivy DD, et al. Acute hemodynamic effects of pulsed delivery of low flow nasal nitric oxide in children with pulmonary hypertension. J Pediatr. 1998;133(3):453–456.

    Article  PubMed  CAS  Google Scholar 

  102. Berner M, et al. Inhaled nitric oxide to test the vasodilator capacity of the pulmonary vascular bed in children with long-standing pulmonary hypertension and congenital heart disease. Am J Cardiol. 1996;77(7):532–535.

    Article  PubMed  CAS  Google Scholar 

  103. Atz AM, Wessel DL. Inhaled nitric oxide in the neonate with cardiac disease. Semin Perinatol. 1997;21:441–455.

    Article  PubMed  CAS  Google Scholar 

  104. Wessel DL, et al. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation. 1993;88(5 Pt 1):2128–2138.

    Article  PubMed  CAS  Google Scholar 

  105. Roberts JD Jr, et al. Inhaled nitric oxide in congenital heart disease. Circulation. 1993;87(2):447–453.

    Article  PubMed  Google Scholar 

  106. Balzer DT, Kort HW, Day RW, et al. Inhaled Nitric Oxide as a Preoperative Test (INOP Test I): the INOP Test Study Group. Circulation. 2002;106:176–181.

    Article  Google Scholar 

  107. Channick RN, et al. Pulsed delivery of inhaled nitric oxide to patients with primary pulmonary hypertension: an ambulatory delivery system and initial clinical tests. Chest. 1996;109(6):1545–1549.

    Article  PubMed  CAS  Google Scholar 

  108. Katayama Y, et al. Minimizing the inhaled dose of NO with breath-by-breath delivery of spikes of concentrated gas. Circulation. 1998;98(22):2429–2432.

    Article  PubMed  CAS  Google Scholar 

  109. Atz AM, Adatia I, Wessel DL. Rebound pulmonary hypertension after inhalation of nitric oxide. Ann Thorac Surg. 1996;62(6):1759–1764.

    Article  PubMed  CAS  Google Scholar 

  110. Pearl JM, Nelson DP, Raake JL, et al. Inhaled nitric oxide increases endothelin-1 levels: a potential cause of rebound pulmonary hypertension. Crit Care Med. 2002;30:89–93.

    Article  PubMed  CAS  Google Scholar 

  111. Ivy DD, et al. Dipyridamole attenuates rebound pulmonary hypertension after inhaled nitric oxide withdrawal in postoperative congenital heart disease. J Thorac Cardiovasc Surg. 1998;115(4):875–882.

    Article  PubMed  CAS  Google Scholar 

  112. Dellinger RP, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled nitric oxide in ARDS study group. Crit Care Med. 1998;26(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  113. Black SM, Fineman JR. Oxidative and nitrosative stress in pediatric pulmonary hypertension: Roles of endothelin-1 and nitric oxide. Vascul Pharmacol. 2006;45(5):308–316.

    Article  PubMed  CAS  Google Scholar 

  114. Oishi P, et al. Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb. Am J Physiol Lung Cell Mol Physiol. 2006;290(2):L359–L366.

    Article  PubMed  CAS  Google Scholar 

  115. Barst RJ, et al. Long-term outcome in pulmonary arterial hypertension patients treated with treprostinil. Eur Respir J. 2006;28:1195–1203.

    Article  PubMed  CAS  Google Scholar 

  116. Lang I, et al. Efficacy of long-term subcutaneous treprostinil sodium therapy in pulmonary hypertension. Chest. 2006;29(6):1636–1643.

    Article  PubMed  CAS  Google Scholar 

  117. Ivy DD, Claussen L, Doran A. Transition of stable pediatric patients with pulmonary arterial hypertension from intravenous epoprostenol to intravenous treprostinil. Am J Cardiol. 2007;99(5):696–698.

    Article  PubMed  CAS  Google Scholar 

  118. Voswinckel R, et al. Favorable effects of inhaled treprostinil in severe pulmonary hypertension: results from randomized controlled pilot studies. J Am Coll Cardiol. 2006;48(8):1672–1681.

    Article  PubMed  CAS  Google Scholar 

  119. Olschewski H, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002;347(5):322–329.

    Article  PubMed  CAS  Google Scholar 

  120. Sablotzki A, et al. Hemodynamic effects of inhaled aerosolized iloprost and inhaled nitric oxide in heart transplant candidates with elevated pulmonary vascular resistance. Eur J Cardiothorac Surg. 2002;22(5):746–752.

    Article  PubMed  Google Scholar 

  121. Beghetti M, Berner M, Rimensberge PC. Long term inhalation of iloprost in a child with primary pulmonary hypertension: an alternative to continuous infusion. Heart. 2001;86(3):E10.

    Article  PubMed  CAS  Google Scholar 

  122. Higenbottam T, Siddons T. Trials of inhaled iloprost and other new vasodilating prostaglandins. Eur Respir J. 2001;17(1):6–7.

    Article  PubMed  CAS  Google Scholar 

  123. Hallioglu O, Dilber E, Celiker A. Comparison of acute hemodynamic effects of aerosolized and intravenous iloprost in secondary pulmonary hypertension in children with congenital heart disease. Am J Cardiol. 2003;92(8):1007–1009.

    Article  PubMed  CAS  Google Scholar 

  124. Dahlem P, et al. Randomized controlled trial of aerosolized prostacyclin therapy in children with acute lung injury. Crit Care Med. 2004;32(4):1055–1060.

    Article  PubMed  Google Scholar 

  125. McLaughlin VV, et al. Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006;174:1257–1263.

    Article  PubMed  CAS  Google Scholar 

  126. Ghofrani HA, et al. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med. 2002;136(7):515–522.

    PubMed  CAS  Google Scholar 

  127. Ghofrani HA, et al. Oral sildenafil as long-term adjunct therapy to inhaled iloprost in severe pulmonary arterial hypertension. J Am Coll Cardiol. 2003;42(1):158–164.

    Article  PubMed  CAS  Google Scholar 

  128. Barst RJ, et al. Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2003;41(12):2119–2125.

    Article  PubMed  CAS  Google Scholar 

  129. Badesch DB, et al. Prostanoid therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43(12 suppl):56S–61S.

    Article  PubMed  CAS  Google Scholar 

  130. Rubin LJ, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002;346(12):896–903.

    Article  PubMed  CAS  Google Scholar 

  131. Beghetti M. Current treatment options in children with pulmonary arterial hypertension and experiences with oral bosentan. Eur J Clin Invest. 2006;36(suppl 3):16–24.

    Article  PubMed  CAS  Google Scholar 

  132. Simpson CM, et al. Preliminary experience with bosentan as initial therapy in childhood idiopathic pulmonary arterial hypertension. J Heart Lung Transplant. 2006;25(4):469–473.

    Article  PubMed  Google Scholar 

  133. Rosenzweig EB, et al. Effects of long-term bosentan in children with pulmonary arterial hypertension. J Am Coll Cardiol. 2005;46(4):697–704.

    Article  PubMed  CAS  Google Scholar 

  134. Maiya S, et al. Response to bosentan in children with pulmonary hypertension. Heart. 2006;92(5):664–670.

    Article  PubMed  CAS  Google Scholar 

  135. Sitbon O, et al. Bosentan for the treatment of pulmonary arterial hypertension associated with congenital heart defects. Eur J Clin Invest. 2006;36(suppl 3):25–31.

    Article  PubMed  CAS  Google Scholar 

  136. Barst RJ, et al. Treatment of pulmonary arterial hypertension with the selective endothelin-A receptor antagonist sitaxsentan. J Am Coll Cardiol. 2006;47(10):2049–2056.

    Article  PubMed  CAS  Google Scholar 

  137. Barst RJ, et al. Clinical efficacy of sitaxsentan, an endothelin-A receptor antagonist, in patients with pulmonary arterial hypertension: open-label pilot study. Chest. 2002;121(6):1860–1868.

    Article  PubMed  CAS  Google Scholar 

  138. Barst RJ, et al. Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med. 2004;169(4):441–447.

    Article  PubMed  Google Scholar 

  139. Horn EM, Widlitz AC, Barst RJ. Sitaxsentan, a selective endothelin-A receptor antagonist for the treatment of pulmonary arterial hypertension. Expert Opin Investig Drugs. 2004;13(11):1483–1492.

    Article  PubMed  CAS  Google Scholar 

  140. Langleben D, et al. STRIDE 1: Effects of the selective eta receptor antagonist, sitaxsentan sodium, in a patient population with pulmonary arterial hypertension that meets traditional inclusion criteria of previous pulmonary arterial hypertension trials. J Cardiovasc Pharmacol. 2004;44:S80–S84.

    Article  PubMed  CAS  Google Scholar 

  141. Langleben D, et al. Sustained symptomatic, functional, and hemodynamic benefit with the selective endothelin-A receptor antagonist, sitaxsentan, in patients with pulmonary arterial hypertension: a 1-year follow-up study. Chest. 2004;126(4):1377–1381.

    Article  PubMed  CAS  Google Scholar 

  142. Widlitz AC, Barst RJ, Horn EM. Sitaxsentan: a novel endothelin-A receptor antagonist for pulmonary arterial hypertension. Expert Rev Cardiovasc Ther. 2005;3(6):985–991.

    Article  PubMed  CAS  Google Scholar 

  143. Schulze-Neick I, Li J, Reader JA, Shekerdemian L, Redington AN, Penny DJ. The endothelin antagonist BQ123 reduces pulmonary vascular resistance after surgical intervention for congenital heart disease. J Thorac Cardiovasc Surg. 2002;124:435–441.

    Article  PubMed  CAS  Google Scholar 

  144. Prendergast B, et al. Early therapeutic experience with the endothelin antagonist BQ-123 in pulmonary hypertension after congenital heart surgery. Heart. 1999;82(4):505–508.

    PubMed  CAS  Google Scholar 

  145. Galie N, et al. Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2005;46(3):529–535.

    Article  PubMed  CAS  Google Scholar 

  146. Prasad S, Wilkinson J, Gatzoulis MA. N Engl J Med. Sildenafil in primary pulmonary hypertension. 2000;343(18):1342.

    CAS  Google Scholar 

  147. Kumar S. Indian doctor in protest after using Viagra to save “blue babies”. BMJ. 2002;325(7357):181.

    Article  PubMed  Google Scholar 

  148. Michelakis ED, et al. Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation. 2003;108(17):2066–2069.

    Article  PubMed  CAS  Google Scholar 

  149. Abrams D, Schulze-Neick I, Magee AG. Sildenafil as a selective pulmonary vasodilator in childhood primary pulmonary hypertension. Heart. 84;84(2):E4.

    Article  Google Scholar 

  150. Karatza AA, Bush A, Magee AG. Safety and efficacy of sildenafil therapy in children with pulmonary hypertension. Int J Cardiol. 2005;100(2):267–273.

    Article  PubMed  Google Scholar 

  151. Galie N, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–2157.

    Article  PubMed  CAS  Google Scholar 

  152. Namachivayam P, et al. Sildenafil Prevents Rebound Pulmonary Hypertension After Withdrawal of Nitric Oxide in Children. Am J Respir Crit Care Med. 2006;174:1042–1047.

    Article  PubMed  CAS  Google Scholar 

  153. Atz Am, Lefler AK, Fairbrother DL, Uber WE, Bradley SM. Sildenafil augments the effect of inhaled nitric oxide for postoperative pulmonary hypertensive crisis. J Thorac Cardiovasc Surg. 2002;124:628–629.

    Article  PubMed  Google Scholar 

  154. Ghofrani HA, et al. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet. 2002;360(9337):895–900.

    Article  PubMed  CAS  Google Scholar 

  155. Schulze-Neick I, et al. Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation. 2003;108(suppl 1):II167–II173.

    PubMed  Google Scholar 

  156. Stocker C, et al. Intravenous sildenafil and inhaled nitric oxide: a randomised trial in infants after cardiac surgery. Intensive Care Med. 2003;29(11):1996–2003.

    Article  PubMed  Google Scholar 

  157. Humpl T, et al. Beneficial effect of oral sildenafil therapy on childhood pulmonary arterial hypertension: twelve-month clinical trial of a single-drug, open-label, pilot study. Circulation. 2005;111(24):3274–3280.

    Article  PubMed  CAS  Google Scholar 

  158. Schermuly RT, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–2821.

    Article  PubMed  CAS  Google Scholar 

  159. Souza R, et al. Long term imatinib treatment in pulmonary arterial hypertension. Thorax. 2006;61(8):736.

    Article  PubMed  CAS  Google Scholar 

  160. Patterson KC, et al. Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann Intern Med. 2006;145(2):152–153.

    PubMed  Google Scholar 

  161. Ghofrani HA, Seeger W, Grimminger F. Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med. 2005;353(13):1412–1413.

    Article  PubMed  CAS  Google Scholar 

  162. Girgis RE, et al. Regression of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L1105–L1110.

    Article  PubMed  CAS  Google Scholar 

  163. Xing XQ, et al. Statins may ameliorate pulmonary hypertension via RhoA/Rho-kinase signaling pathway. Med Hypotheses. 2007;68(5):1108–1113.

    Article  PubMed  CAS  Google Scholar 

  164. Kao PN. Simvastatin treatment of pulmonary hypertension: an observational case series. Chest. 2005;127(4):1446–1452.

    CAS  Google Scholar 

  165. Fukumoto Y, et al. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart. 2005;91(3):391–392.

    Article  PubMed  CAS  Google Scholar 

  166. Zhao YD, et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res. 2005;96(4):442–450.

    Article  PubMed  CAS  Google Scholar 

  167. Stewart DJ, Zhao YD, Courtman DW. Cell therapy for pulmonary hypertension: what is the true potential of endothelial progenitor cells? Circulation. 2004; 109(12):e172–e173

    Article  PubMed  Google Scholar 

  168. Blanc J, Vouhé P, Bonnet D. Potts shunt in patients with pulmonary hypertension. N Engl J Med. 2004;350(6):623.

    Article  PubMed  CAS  Google Scholar 

  169. Sandoval J, et al. Graded balloon dilation atrial septostomy in severe primary pulmonary hypertension. A therapeutic alternative for patients nonresponsive to vasodilator treatment. J Am Coll Cardiol. 1998;32(2):297–304.

    Article  PubMed  CAS  Google Scholar 

  170. O’Loughlin AJ, Keogh A, Muller DW. Insertion of a fenestrated Amplatzer atrial septostomy device for severe pulmonary hypertension. Heart Lung Circ. 2006;15(4):275–277.

    Article  PubMed  Google Scholar 

  171. Micheletti A, et al. Role of atrial septostomy in the treatment of children with pulmonary arterial hypertension. Heart. 2006;92(7):969–972.

    Article  PubMed  CAS  Google Scholar 

  172. Kerstein D, et al. Blade balloon atrial septostomy in patients with severe primary pulmonary hypertension. Circulation. 1995;91(7):2028–2035.

    Article  PubMed  CAS  Google Scholar 

  173. Barst RJ. Role of atrial septostomy in the treatment of pulmonary vascular disease. Thorax. 2000;55(2):95–96.

    Article  PubMed  CAS  Google Scholar 

  174. Rich S, Dodin E, McLaughlin VV. Usefulness of atrial septostomy as a treatment for primary pulmonary hypertension and guidelines for its application. Am J Cardiol. 1997;80(3):369–371.

    Article  PubMed  CAS  Google Scholar 

  175. Rich S, Lam W. Atrial septostomy as palliative therapy for refractory primary pulmonary hypertension. Am J Cardiol. 1983;51(9):1560–1561.

    Article  PubMed  CAS  Google Scholar 

  176. Nihill MR, O’Laughlin MP, Mullins CE. Effects of atrial septostomy in patients with terminal cor pulmonale due to pulmonary vascular disease. Cathet Cardiovasc Diagn. 1991;24:166–172.

    Article  PubMed  CAS  Google Scholar 

  177. Choong CK, et al. Repair of congenital heart lesions combined with lung transplantation for the treatment of severe pulmonary hypertension: a 13-year experience. J Thorac Cardiovasc Surg. 2005;129(3):661–669.

    Article  PubMed  Google Scholar 

  178. Bridges ND, et al. Outcome of children with pulmonary hypertension referred for lung or heart and lung transplantation. Transplantation. 1996;62(12):1824–1828.

    Article  PubMed  CAS  Google Scholar 

  179. Spray TL. Lung transplantation in children with pulmonary hypertension and congenital heart disease. Semin Thorac Cardiovasc Surg. 1996;8(3):286–295.

    PubMed  CAS  Google Scholar 

  180. Bridges ND, Mallory GB, Huddleston CB, et al. Lung transplantation in children and young adults with cardiovascular disease. Ann Thorac Surg. 1995;59:813–821.

    Article  PubMed  CAS  Google Scholar 

  181. Clabby ML, et al. Hemodynamic data and survival in children with pulmonary hypertension. J Am Coll Cardiol. 1997;30(2):554–560.

    Article  PubMed  CAS  Google Scholar 

  182. Waddell TK, et al. Heart-lung or lung transplantation for Eisenmenger syndrome. J Heart Lung Transplant. 2002;21(7):731–737.

    Article  PubMed  Google Scholar 

  183. Donti A, et al. Pulmonary arterial hypertension in the pediatric age. J Cardiovasc Med (Hagerstown). 2007; 8(1): 72–77.

    Article  Google Scholar 

  184. Faro A, et al. American Society of Transplantation executive summary on pediatric lung transplantation. Am J Transplant. 2007;7(2):285–292.

    Article  PubMed  CAS  Google Scholar 

  185. Waltz DA, et al. Registry of the International Society for Heart and Lung Transplantation: ninth official pediatric lung and heart-lung transplantation report–2006. J Heart Lung Transplant. 2006;25(8):904–911.

    Article  PubMed  Google Scholar 

  186. Thilenius OG, Nadas AS, Jockin H. Primary pulmonary vascular obstruction in children. Pediatrics. 1965;36:75–87.

    PubMed  CAS  Google Scholar 

  187. Sandoval J, et al. Primary pulmonary hypertension in children: clinical characterization and survival. J Am Coll Cardiol. 1995;25(2):466–474.

    Article  PubMed  CAS  Google Scholar 

  188. Hopkins WE, et al. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant. 1996;15(1 Pt 1):100–105.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunbar Ivy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ivy, D., Rashid, A. (2009). Chronic Pulmonary Hypertension. In: Munoz, R., Morell, V., Cruz, E., Vetterly, C. (eds) Critical Care of Children with Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84882-262-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-262-7_45

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-261-0

  • Online ISBN: 978-1-84882-262-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics