Skip to main content

The Effects of Cardiopulmonary Bypass Following Pediatric Cardiac Surgery

  • Chapter
  • First Online:
  • 3888 Accesses

Abstract

The recent advances in pediatric cardiac surgery have focused on early primary repair and shown a marked improvement in outcome. Currently, the average mortality is 3.5% in children older than 1 year of age undergoing open-heart surgery and between 10 and 40% for repair undertaken in the neonatal period.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gravlee G, Davis R, Stammers A, Ungerleider R. Cardiopulmonary Bypass.Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  2. Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass mechanisms involved and possible therapeutic strategies. Chest. 1997;112:676–692.

    Article  PubMed  CAS  Google Scholar 

  3. Brix-Christensen V. The systemic inflammatory response after cardiac surgery with cardiopulmonary bypass in children. Acta Anaesthesiol Scand. 2001;45:671–667.

    Article  PubMed  CAS  Google Scholar 

  4. Madhok A, Viraga OK, Haridas V, Parnell V, Savita P. Cytokine response in children undergoing surgery for congenital heart disease. Pediatr Cardiol. 2006;27:408–413.

    Article  PubMed  Google Scholar 

  5. Chong A, Hampton CR, Edward D. Verrier microvascular inflammatory response in cardiac surgery. Semin Cardiothorac Vasc Anesth. 2003;7:333.

    Article  Google Scholar 

  6. Hall RI. Cardiopulmonary bypass and the systemic inflammatory response: effects on drug action. J Cardiothorac Vasc Anesth. 2002;16:83–98.

    Article  PubMed  Google Scholar 

  7. Jaggers J, Lawson JH. Coagulopathy and inflammation in neonatal heart surgery: mechanisms and strategies. Ann Thorac Surg. 2006;81:S2360–S2366.

    Article  PubMed  Google Scholar 

  8. Von Ungern-Sternberg BS, Petak F, Saudan S, et al. Effect of cardiopulmonary bypass and aortic clamping on functional residual capacity and ventilation distribution in children. J Thorac Cardiovasc Surg. 2007;134:1193–1198.

    Article  Google Scholar 

  9. Ng CS, Arifi AA, Wan S, et al. Ventilation during cardiopulmonary bypass: impact on cytokine response and cardiopulmonary function. Annals of Thoracic Surgery. 2008;85:154–162.

    Article  PubMed  Google Scholar 

  10. Durandy Y, Hulin S. Intermittent warm blood cardioplegia in the surgical treatment of congenital heart disease: clinical experience with 1400 cases. J Thorac Cardiovasc Surg. 2007;133:241–246.

    Article  PubMed  Google Scholar 

  11. Amark K, Berggren H, Björk K, et al. Blood cardioplegia provides superior protection in infant cardiac surgery. Ann Thorac Surg. 2005;80:989–994.

    Article  PubMed  Google Scholar 

  12. Cuccurullo L, Accardo M, Agozzino L, Blasi F, Esposito S, Vosa C. Ultrastructural pathology of pediatric myocardium in acute ischemia: bioptic study before and after treatment with cardioplegic solution. Ultrastruct Pathol. 2006;30:453–460.

    Article  PubMed  CAS  Google Scholar 

  13. Pigula FA, Gandhi SK, Davis PJ, Webber SA, Nemato EM. Regional low-flow perfusion provides somatic circulatory support during neonatal aortic arch surgery. Annals of Thoracic Surgery. 2001;72(2):406–407.

    Article  PubMed  Google Scholar 

  14. Markowitz SD, Ichord RN, Wernovsky G, Gaynor JW, Nicolson SC. Surrogate markers for neurological outcome in children after deep hypothermic circulatory arrest. Semin Cardiothorac Vasc Anesth. 2007;11:59–65.

    Article  PubMed  Google Scholar 

  15. Hsia TY, Gruber PJ. Factors influencing neurologic outcome after neonatal cardiopulmonary bypass: what we can and cannot control. Ann Thorac Surg. 2006;81:S2381–S2388.

    Article  PubMed  Google Scholar 

  16. Gaynor JW, Wernovsky G, Jarvik GP, Bernbaum J, Gerdes M, et al. Patient characteristics are important determinants of neurodevelopmental outcome at one year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:1344–1353.

    Article  PubMed  Google Scholar 

  17. Dahlbacka S, Alaoja H, Mäkelä J, Niemelä E, Laurila P, Kiviluoma K, Honkanen A, Ohtonen P, Anttila V, Juvonen T. Effects of pH management during selective antegrade cerebral perfusion on cerebral microcirculation and metabolism: alpha-stat versus pH-stat. Ann Thorac Surg. 2007; 84:847–855.

    Article  PubMed  Google Scholar 

  18. Halstead JC, Spielvogel D, Meier DM, et al. Optimal pH strategy for selective cerebral perfusion. Eur J Cardiothorac Surg. 2005;28:266–273.

    Article  PubMed  Google Scholar 

  19. Bellinger DC, Wypij D, AJ Du plessis, Rappaport LA, et al. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2001;121:374–383.

    Article  PubMed  CAS  Google Scholar 

  20. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765–1774.

    Article  PubMed  Google Scholar 

  21. de Ferranti S, Gauvreau K, Hickey PR, et al. Intraoperative hyperglycemia during infant cardiac surgery is not associated with adverse neurodevelopmental outcomes at 1, 4, and 8 years. Anesthesiology. 2004;100:1345–1352.

    Article  PubMed  Google Scholar 

  22. Bockeria LA, Kim A, Averina T, Zaharchenko A. ICVTS on-line discussion A. Minimizing CPBP circuit and reducing use of homologous blood products. Interact Cardiovasc Thorac Surg. 2007;6:339.

    Article  PubMed  Google Scholar 

  23. Miyaji K, Kohira S, Miyamoto T, et al. Pediatric cardiac surgery without homologous blood transfusion, using a miniaturized bypass system in infants with lower body weight. J Thorac Cardiovasc Surg. 2007;134:284–289.

    Article  PubMed  Google Scholar 

  24. Liu J, Ji B, Long C, Li C, Feng Z. Comparative effectiveness of methylprednisolone and zero-balance ultrafiltration on inflammatory response after pediatric cardiopulmonary bypass. Artif Organs. 2007;31:571–575.

    Article  PubMed  CAS  Google Scholar 

  25. Yndgaard S, Andersen L, Andersen C, Petterson G. The effect of modified ultrafiltration on the amount of circulating endotoxins in children undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2000;14:399–401.

    Article  PubMed  CAS  Google Scholar 

  26. Berdat PA, Eichenberger E, Ebell E, Pfamm JJ. Elimination of proinflammatory cytokines in pediatric cardiac surgery: Analysis of ultrafiltration method and filter type. J Thorac Cardiovasc Surg. 2004;127:1691–1694.

    Article  Google Scholar 

  27. Wang W, Zhu D, Huang H, et al. Effect of flow rate, negative pressure, and duration of modified ultrafiltration on hemodynamics and inflammatory mediators. ASAIO J. 2007;51:41–45.

    Article  Google Scholar 

  28. Aggarwal NK, Das SN, Sharma G, Kiran U. Efficacy of combined modified and conventional ultrafiltration during cardiac surgery in children. Ann Card Anaesth. 2007;10:27–33.

    Article  PubMed  Google Scholar 

  29. Williams GD, Ramamoorthy C, Chu L, et al. Modified and conventional ultrafiltration during pediatric cardiac surgery: clinical outcomes compared. Journal of Thoracic and Cardiovascular Surgery. 2006;132:1291–1298.

    Article  PubMed  Google Scholar 

  30. Valleley MS, Buckley KW, Hayes KM, Fortuna RR, Geiss DM, Holt DW. Are there benefits to a fresh whole blood vs. packed red blood cell cardiopulmonary bypass prime on outcomes in neonatal and pediatric cardiac surgery? J Extra Corpor Technol. 2007;39:168–176.

    PubMed  Google Scholar 

  31. Vohra HA, Adluri K, Willets R, Horsburgh A, Barron DJ, Brawn WJ. Changes in potassium concentration and haematocrit associated with cardiopulmonary bypass in paediatric cardiac surgery. Perfusion. 2007;22:92.

    Article  Google Scholar 

  32. Golab HD, Takkenberg JJ, van Gerner-Weelink GL, et al. Effects of cardiopulmonary bypass circuit reduction and residual volume salvage on allogeneic transfusion requirements in infants undergoing cardiac surgery. Interact Cardiovasc Thorac Surg. 2007;6:335–339.

    Article  PubMed  Google Scholar 

  33. Mou SS, Giroir BP, Molitor-Kirsch EA, et al. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. N Engl J Med. 2004;351:1635–1644.

    Article  PubMed  CAS  Google Scholar 

  34. Schroth M, Plank C, Meibner U, et al. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery. Pediatrics. 2006;118:e76–e84.

    Article  PubMed  Google Scholar 

  35. Society of Thoracic Surgeons Blood Conservation Guideline Task Force, Ferraris VA, Ferraris SP, et al. Perioperative blood transfusion and blood conservation in cardiac surgery: the society of thoracic surgeons and the society of cardiovascular anesthesiologists clinical practice guideline. Ann Thorac Surg. 2007;83:S27–S86.

    Article  PubMed  Google Scholar 

  36. Oliver W, Fass D, Nuttal G. Variability of plasma aprotinin concentrations in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2004;127:671–675.

    Article  Google Scholar 

  37. Oliver WC Jr. Overview of heparin and protamine management and dosing regimens in pediatric cardiac surgical patients. Semin Cardiothorac Vasc Anesth. 2003;7:387.

    Article  Google Scholar 

  38. Zuppa AF, Nicolson SC, Adamson PC, et al. Population pharmacokinetics of milrinone in neonates with hypoplastic left heart syndrome undergoing stage I reconstruction. Anesth Analg. 2006;102:1062–1069.

    Article  PubMed  CAS  Google Scholar 

  39. Oliver WC Jr, Fass DN, Nuttall GA, et al. Variability of plasma aprotinin concentrations in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2004;127:1670–1677.

    Article  PubMed  CAS  Google Scholar 

  40. Alkan T, Akçevin A, Undar A, Türkoglu H, Paker T, Aytaç A. Pulsatile perfusion during cardiopulmonary bypass procedures in neonates, infants, and small children. ASAIO J. 2007;53:706–709.

    Article  Google Scholar 

  41. Guzzetta NA, Miller BE, Todd K, et al. Clinical measures of heparin’s effect and thrombin inhibitor levels in pediatric patients with congenital heart disease. Anesth Analg. 2006;103:1131–1138.

    PubMed  Google Scholar 

  42. Chan KL, Summerhayes RG, Ignjatovic V, Horton SB, Monagle PT. Reference values for kaolin-activated thromboelastography in healthy children. Anesthesia and Analgesia. 2007;105:1610–1613.

    Article  PubMed  Google Scholar 

  43. Owings JT, Pollock ME, Gosselin RC, Ireland K, Jahr JS, Larkin EC. Anticoagulation of children undergoing cardiopulmonary bypass is overestimated by current monitoring techniques. Arch Surg. 2000;135:1042–1047.

    Article  PubMed  CAS  Google Scholar 

  44. Williams GD, Ramamoorthy C. Brain monitoring and protection during pediatric cardiac surgery. Semin Cardiothorac Vasc Anesth. 2007;11:23.

    Article  PubMed  Google Scholar 

  45. Polito A, Ricci Z, Di Chiara L, et al. Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery: the role of transcranial Doppler - a systematic review of the literature. Cardiovasc Ultrasound. 2006;4:47.

    Article  PubMed  Google Scholar 

  46. Gessler P, Hohl V, Carrel T, et al. Administration of steroids in pediatric cardiac surgery: impact on clinical outcome and systemic inflammatory response. Pediatr Cardiol. 2005;26:595–600.

    Article  PubMed  CAS  Google Scholar 

  47. Brunow de Carvalho W, Fonseca MC Steroids use in pediatric cardiac surgery: more questions. Pediatr Crit Care Med 2007; 8: 503–504.

    Article  Google Scholar 

  48. Ando M, Park IS, Wada N, et al. Steroid supplementation: A legitimate pharmacotherapy after neonatal open heart surgery. Ann Thorac Surg. 2005;80:1672–1678.

    Article  PubMed  Google Scholar 

  49. Checchia PA, Bronicki RA, Costello JM, Nelson DP.Steroid use before pediatric cardiac operations using cardiopulmonary bypass: an international survey of 36 centers. Pediatr Crit Care Med 2005; 6: 441–444.

    Article  PubMed  Google Scholar 

  50. Robertson-Malt S, Afrane B, El Barbary MProphylactic steroids for pediatric open heart surgery. Cochrane Database Syst Rev 2007; 17: CD005550. Review.

    Google Scholar 

  51. Joffe AR, Robertson CM, Nettel-Aguirre A, Rebeyka IM, Sauve RS, Western canadian complex pediatric therapies project follow-up group. Mortality after neonatal cardiac surgery: Prediction from mean arterial pressure after rewarming in the operating room. J Thorac Cardiovasc Surg. 2007;134:311–318.

    Article  PubMed  Google Scholar 

  52. Robert CG, Cardiovascular Disease Study Group. A systematic approach to the understanding and redesigning of cardiopulmonary bypass. Semin Cardiothorac Vasc Anesth. 2005;9:159.

    Article  Google Scholar 

  53. Rubens FD, Mesana T. Surface modified cardiopulmonary bypass circuits: modifying the inflammatory response. Semin Cardiothorac Vasc Anesth. 2002;6:301.

    Article  Google Scholar 

  54. Warren O, Alexiou C, Massey R, et al. The effects of various leukocyte filtration strategies in cardiac surgery. Eur J Cardiothorac Surg. 2007;31:665–676.

    Article  PubMed  Google Scholar 

  55. Bockeria LA, Averina TB, Kucherova IJ. Miniaturized cardiopulmonary bypass system in neonates and small infants. Interact Cardiovasc Thorac Surg. 2008;7:78–-79.

    Article  PubMed  Google Scholar 

  56. Markowitz S, Ichord R, Wernovsky G, Gaynor JW, Nicolson S. Surrogate markers for neurological outcome in children after deep hypothermic circulatory arrest. Sem Cardiothorac Vasc Anesth. 2007;11:59–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Manrique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Manrique, A.M., Kelly, K., Litchenstein, S.E. (2009). The Effects of Cardiopulmonary Bypass Following Pediatric Cardiac Surgery. In: Munoz, R., Morell, V., Cruz, E., Vetterly, C. (eds) Critical Care of Children with Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84882-262-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-262-7_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-261-0

  • Online ISBN: 978-1-84882-262-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics