Skip to main content

Part of the book series: Texts in Computer Science ((TCS))

Abstract

In the data understanding phase we have explored all available data and carefully checked if they satisfy our assumptions and correspond to our expectations. We intend to apply various modeling techniques to extract models from the data. Although we have not yet discussed any modeling technique in greater detail (see Chaps. 7ff), we have already glimpsed at some fundamental techniques and potential pitfalls in the previous chapter. Before we start modeling, we have to prepare our data set appropriately, that is, we are going to modify our dataset so that the modeling techniques are best supported but least biased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reduction of inflected or derived words to their root (or stem) is called stemming. So-called stemmers are computer programs that try to automate this step.

  2. 2.

    Bayesian classifiers can handle numerical data directly by imposing some assumptions on their distribution. If such assumptions cannot be justified, discretization may be a better alternative.

References

  1. Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley, Chichester (2006)

    Book  Google Scholar 

  2. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proc. 12th Int. Conf. on Machine Learning (ICML 95, Lake Tahoe, CA), pp. 115–123. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  3. Elomaa, T., Rousu, J.: Efficient multisplitting revisited: optima-preserving elimination of partition candidates. Data Min. Knowl. Discov. 8(2), 97–126 (2004)

    Article  MathSciNet  Google Scholar 

  4. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proc. 10th Int. Conf. on Artificial Intelligence (ICML’93, Amherst, MA), pp. 1022–1027. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  5. Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  6. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  7. Hall, M.A., Smith, L.A.: Feature subset selection: a correlation based filter approach. In: Proc. Int. Conf. on Neural Information Processing and Intelligent Information Systems, pp. 855–858. Springer, Berlin (1997)

    Google Scholar 

  8. Kolodyazhniy, V., Klawonn, F., Tschumitschew, K.: A neuro-fuzzy model for dimensionality reduction and its application. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 15, 571–593 (2007)

    Article  MATH  Google Scholar 

  9. Lowe, D., Tipping, M.E.: Feed-forward neural networks topographic mapping for exploratory data analysis. Neural Comput. Appl. 4, 83–95 (1996)

    Article  Google Scholar 

  10. Markovitch, S., Rosenstein, S.: Feature generation using general constructor functions. Mach. Learn. 49(1), 59–98 (2002)

    Article  MATH  Google Scholar 

  11. Murphy, P., Pazani, M.: ID2-of-3: constructive induction of m-of-n concepts for discriminators in decision trees. In: Proc. 8th Int. Conf. on Machine Learning (ICML’91, Chicago, IL), pp. 183–188. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  12. Petrushin, V.A., Khan, L. (eds.): Multimedia Data Mining and Knowledge Discovery. Springer, New York (2006)

    Google Scholar 

  13. Rehm, F., Klawonn, F., Kruse, R.: POLARMAP—efficient visualisation of high dimensional data. In: Information Visualization, pp. 731–740. IEEE Press, Piscataway (2006)

    Google Scholar 

  14. Rehm, F., Klawonn, F.: Improving angle based mappings. In: Advanced Data Mining and Applications, pp. 3–14. Springer, Berlin (2008)

    Chapter  Google Scholar 

  15. Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1–2), 23–69 (2004)

    Google Scholar 

  16. van der Putten, P., van Someren, M.: A bias-variance analysis of a real world learning problem: the COIL challenge 2000. Mach. Learn. 57, 177–195 (2004)

    Article  MATH  Google Scholar 

  17. Yang, Y., Webb, G.I.: Discretization for naive Bayes learning: managing discretization bias and variance. Mach. Learn. 74(1), 39–74 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Berthold .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Berthold, M.R., Borgelt, C., Höppner, F., Klawonn, F. (2010). Data Preparation. In: Guide to Intelligent Data Analysis. Texts in Computer Science. Springer, London. https://doi.org/10.1007/978-1-84882-260-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-260-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-259-7

  • Online ISBN: 978-1-84882-260-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics