Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 664 Accesses

Abstract

This chapter first, from a historical viewpoint, shows why Petri nets are a widely used mathematical tool to investigate supervisory control of discrete-event systems, particularly for the deadlock analysis and control of automated manufacturing systems. The advantages and disadvantages of three major deadlock resolution strategies in the context of resource allocation systems, which are deadlock detection and recovery, deadlock avoidance, and deadlock prevention, are analyzed. A number of subclasses of Petri nets that can model various automated manufacturing systems are listed. Then, it reviews the existing deadlock prevention policies in the literature for automated manufacturing systems. The policies are qualitatively evaluated and compared briefly from computational complexity, supervisor complexity, and behavioral permissiveness. Finally, it outlines the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, I.B., ElMaraghy, H.A. (1998) Deadlock prevention and avoidance in FMS: A Petri net based approach. International Journal of Advanced Manufacturing Technology, vol.14, no.10, pp.704–715.

    Article  Google Scholar 

  2. Araki, T., Sugiyama, Y., Kasami, T., Okui, J. (1977) Complexity of the deadlock avoidance problems. In Proc. 2nd IBM Symposium on the Mathematical Foundations of Computer Science, pp.229–252.

    Google Scholar 

  3. Badouel, E., Darondeau, P. (1998) Theory of regions. Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.), pp.529– 586.

    Google Scholar 

  4. Banaszak, Z., Roszkowska, E. (1988) Deadlock avoidance in pipeline concurrent processes. Podstawy Sterowania (Foundations of Control), vol.18, no.1, pp.3–17.

    MATH  MathSciNet  Google Scholar 

  5. Banaszak, Z., Krogh, B.H. (1990) Deadlock avoidance in êxible manufacturing systems with concurrently competing process ôws. IEEE Transactions on Robotics and Automation, vol.6, no.6, pp.724–734.

    Article  Google Scholar 

  6. Barkaoui, K., Chaoui, A., Zouari, B. (1997) Supervisory control of discrete event systems based on structure theory of Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.3750–3755.

    Google Scholar 

  7. Ben-Naoum, L., Boel, R., Bongaerts, L., De Schutter, B., Peng, Y., Valckenaers, P., Vandewalle, J., Wertz, V. (1995) Methodologies for discrete event dynamic systems: A survey. Journal A, vol.36, no.4, pp.3–14.

    Google Scholar 

  8. Bogdan, S., Lewis, F.L., Kovacic, Z., Mireles, J. (2006) Manufacturing Systems Control Design. London: Springer.

    MATH  Google Scholar 

  9. Cao, X.R., Cohen, G., Giua, A., Wonham, W.M., Van Schuppen, J.H. (2002) Unity in diversity, diversity in unity: Retrospective and prospective views on control of discrete event systems. Journal of Discrete Event Dynamic Systems: Theory and Applications, vol.12, no.3, pp.253–264.

    Article  MATH  Google Scholar 

  10. Cassandras, C.G., Lafortune, S. (1999) Introduction to Discrete Event Systems. Boston, MA: Kluwer.

    MATH  Google Scholar 

  11. Cassandras, C.G., Lafortune, S. (2008) Introduction to Discrete Event Systems. Springer.

    Google Scholar 

  12. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

    Article  Google Scholar 

  13. Coffman, E.G., Elphick, M.J., Shoshani, A. (1971) System deadlocks. ACM Computing Surveys, vol.3, no.2, pp.67–78.

    Article  MATH  Google Scholar 

  14. Colom, J.M., Silva, M. (1989) Improving the linearly based characterization of P/T nets. In Proc. 10th Int. Conf. on Applications and Theory of Petri Nets, G. Rozenberg (Ed.), Lecture Notes in Computer Science, vol.483, pp.113–145.

    Google Scholar 

  15. David R., Alla, H. (1992) Petri Nets and Grafcet. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  16. Desrocher, A.A., AI-Jaar, R.Y. (1995) Applications of Petri Nets in Manufacturing Systems: Modeling, Control, and Performance Analysis. Piscataway, NJ: IEEE Press.

    Google Scholar 

  17. DiCesare, F., Harhalakis, G., Porth, J.M., Vernadat, F.B. (1993) Practice of Petri Nets in Manufacturing. Chapman and Hall.

    Google Scholar 

  18. Ezpeleta, J., Couvreur, J.M., Silva, M. (1993) A new technique for ñding a generating family of siphons, traps, and st-components: Application to colored Petri nets. In Advances in Petri Nets, Lecture Notes in Computer Science, vol.674, G. Rozenberg (Ed.), pp.126–147.

    Google Scholar 

  19. Ezpeleta, J., Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy for êxible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11, no.2, pp.173–184.

    Article  Google Scholar 

  20. Ezpeleta, J., García-Vallés, F., Colom, J.M. (1998) A class of well structured Petri nets for êxible manufacturing systems. In Proc. 19th Int. Conf. on Applications and Theory of Petri Nets, Lecture Notes in Computer Science, vol.1420, J. Desel and M. Silva (Eds.), pp.64–83.

    Google Scholar 

  21. Ezpeleta, J., Tricas, F., García-Vallés, F., Colom, J.M. (2002) A banker’s solution for deadlock avoidance in FMS with êxible routing and multiresource States. IEEE Transactions on Robotics and Automaton, vol.18. no.4, pp.621–625.

    Article  Google Scholar 

  22. Ezpeleta, J., Recalde, L. (2004) A deadlock avoidance approach for non-sequential resource allocation systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.93–101.

    Article  Google Scholar 

  23. Fanti, M.P., Zhou, M.C. (2004) Deadlock control methods in automated manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.5–22.

    Article  Google Scholar 

  24. Fanti, M.P., Zhou, M.C. (2005) Deadlock control methods in automated manufacturing systems. In Deadlock Resolution in Computer-Integrated Systems, New York: Marcel Dekker, pp.1–22.

    Google Scholar 

  25. García-Vallés, F., Colom, J.M. (1999) Implicit places in net systems. In Proc. 8th Int. Workshop on Petri Nets and Performance Models, pp.104–113.

    Google Scholar 

  26. Ghaffari, A., Rezg, N., Xie, X.L. (2003) Design of a live and maximally permissive Petri net controller using the theory of regions. IEEE Transactions on Robotics and Automation, vol.19, no.1, pp.137–142.

    Article  MathSciNet  Google Scholar 

  27. Gligor, V., Shattuck, S. (1980) On deadlock detection in distributed systems. IEEE Transactions on Software Engineering, vol.6, no.5, pp.435–440.

    Article  Google Scholar 

  28. Gold, E.M. (1978) Deadlock predication: Easy and diffficult cases. SIAM Journal of Computing, vol.7, no.3, pp.320–336.

    Article  MATH  MathSciNet  Google Scholar 

  29. Haberman, A. (1969) Prevention of system deadlocks. Communications of the ACM, vol.12, no.7, pp.373–377.

    Article  Google Scholar 

  30. Hack, M.H.T. (1972) Analysis of Production Schemata by Petri Nets. Master Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

    Google Scholar 

  31. Holloway, L.E., Krogh, B.H., Giua, A. (1997) A survey of Petri net methods for controlled discrete event systems. Discrete Event Dynamic Systems: Theory and Applications, vol.7, no.2, pp.151–190.

    Article  MATH  Google Scholar 

  32. Holt, R. (1972) Some deadlock properties of computer systems. ACM Computing Surveys, vol.4, no.3, pp.179–196.

    Article  MathSciNet  Google Scholar 

  33. Hruz, B., Zhou, M.C (2007) Modeling and Control of Discrete-Event Dynamic Systems: With Petri Nets and Other Tools. London: Springer.

    MATH  Google Scholar 

  34. Hsieh, F.S., Chang, S.C. (1994) Dispatching-driven deadlock avoidance controller synthesis for êxible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.10, no.2, pp.196–209.

    Article  Google Scholar 

  35. Hsieh, F.S. (2004) Fault-tolerant deadlock avoidance algorithm for assembly processes. IEEE Transactions Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.65–79.

    Article  Google Scholar 

  36. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) Deadlock prevention policy based on Petri nets and siphons. International Journal of Production Research, vol.39, no.2, pp.283– 305.

    Article  MATH  Google Scholar 

  37. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) A deadlock prevention policy for êxible manufacturing systems using siphons. In Proc. IEEE Int. Conf. on Robotics and Automation, pp.541–546.

    Google Scholar 

  38. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, D.H. (2006) Siphon-based deadlock prevention policy for êxible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.36, no.6, pp.2152–2160.

    Article  Google Scholar 

  39. Iordache, M.V. (2003) Methods for the Supervisory Control of Concurrent Systems Based on Petri Net Abstractions. Doctoral Dissertation, University of Notre Dame.

    Google Scholar 

  40. Isloor, S.S., Marsland, T.A. (1980) The deadlock problem: An overview. Computer, vol.13, no.9, pp.58–77.

    Article  Google Scholar 

  41. Jeng, M.D., DiCesare, F. (1993) A review of synthesis techniques for Petri nets with applications to automated manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.23, no.1, pp.301–312.

    Article  MATH  MathSciNet  Google Scholar 

  42. Jeng, M.D., DiCesare, F. (1995) Synthesis using resource control nets for modeling sharedresource systems. IEEE Transactions on Robotics and Automation, vol.11, no.3, pp.317–327.

    Article  Google Scholar 

  43. Jeng, M.D. (1997) A Petri net synthesis theory for modeling êxible manufacturing systems. IEEE Transactions on Systems, Man and Cybernetics, Part B, vol.27, no.2, pp.169–183.

    Article  MathSciNet  Google Scholar 

  44. Jeng, M.D., Xie, X.L. (1999) Analysis of modularly composed nets by siphons. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.29, no.4, pp.399–406.

    Article  Google Scholar 

  45. Jeng, M.D., Xie, X.L., Peng, M.Y. (2002) Process nets with resources for manufacturing modeling and their analysis. IEEE Transactions on Robotics and Automation, vol.18, no.6, pp.875–889.

    Article  Google Scholar 

  46. Jeng, M.D., Xie, X.L., Chung, S.L. (2004) ERCN* merged nets for modeling degraded behavior and parallel processes in semiconductor manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.102–112.

    Article  Google Scholar 

  47. Jeng, M.D., Xie, X.L. (2005) Deadlock detection and prevention of automated manufacturing systems using Petri nets and siphons. In Deadlock Resolution in Computer-Integrated Systems, M. C. Zhou and M. P. Fanti (Eds.), pp.233-281, New York: Marcel Dekker.

    Google Scholar 

  48. Kumar, R. Garg, V. (1995) Modeling and Control of Logical Discrete Event Systems. Boston, MA: Kluwer.

    MATH  Google Scholar 

  49. Kumaran, T.K., Chang, W., Cho, H., Wysk, R.A. (1994) A structured approach to deadlock detection, avoidance and resolution in êxible manufacturing systems. International Journal of Production Research, vol.32, no.10, pp.2361–2379.

    Article  Google Scholar 

  50. Lautenbach, K. (1987) Linear algebraic calculation of deadlocks and traps. In Concurrency and Nets, K. Voss, H. J. Genrich and G. Rozenberg (Eds.), pp.315–336.

    Google Scholar 

  51. Lautenbach, K., Ridder, H. (1993) Liveness in bounded Petri nets which are covered by T- invariants. In Proc. 13th Int. Conf. on Applications and Theory of Petri Nets, Lecture Notes in Computer Science, vol.815, R. Valette (Ed.), pp.358–375.

    Google Scholar 

  52. Lautenbach, K., Ridder, H. (1996) The linear algebra of deadlock avoidance–a Petri net approach. No.25-1996, Technical Report, Institute of Software Technology, University of Koblenz-Landau, Koblenz, Germany.

    Google Scholar 

  53. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to deadlock prevention in êxible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.38–51.

    Article  Google Scholar 

  54. Li, Z.W., Zhou, M.C. (2006) Two-stage method for synthesizing liveness-enforcing supervisors for êxible manufacturing systems using Petri nets. IEEE Transactions on Industrial Informatics, vol.2, no.4, pp.313–325.

    Article  Google Scholar 

  55. Li, Z.W., Zhou, M.C. (2006) Clariffications on the deñitions of elementary siphons of Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.36, no.6, pp.1227– 1229.

    Article  Google Scholar 

  56. Li, Z.W., Hu, H.S., Wang, A.R. (2007) Design of liveness-enforcing supervisors for êxible manufacturing systems using Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol.37, no.4, pp.517–526.

    Article  Google Scholar 

  57. Li, Z.W., Zhou, M.., Jeng, M.D. (2008) A maximally permissive deadlock prevention policy for FMS based on Petri net siphon control and the theory of regions. IEEE Transactions on Automation Science and Engineering, vol.5, no.1, pp.182–188.

    Article  Google Scholar 

  58. Li, Z.W. (2009) On systematic methods to remove redundant monitors from livenessenforcing net supervisors. To appear in Computer and Industrial Engineering.

    Google Scholar 

  59. Moody, J.O., Antsaklis, P.J. (1998) Supervisory Control of Discrete Event Systems Using Petri Nets. Boston, MA: Kluwer.

    MATH  Google Scholar 

  60. Newton, G. (1979) Deadlock prevention, detection, and resolution: An annotated bibliography. ACM SIGOPS Operating Systems Review, vol.13, no.2, pp.33–44.

    Google Scholar 

  61. Pablo, J., Colom, J.M. (2006) Resource allocation systems: Some complexity results on the S4PR class. In Proc. IFIP International Federation for Information Processing, Lecture Notes in Computer Science, vol.4229, E. Najm et al. (Eds.), pp.323–338.

    Google Scholar 

  62. Park, J., Reveliotis, S.A. (2001) Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and êxible routings. IEEE Transactions on Automatic Control, vol.46, no.10, pp.1572–1583.

    Article  MATH  MathSciNet  Google Scholar 

  63. Peterson, J.L., Silberschatz, A. (1985) Operating System Concepts. Reading, MA: Addison- Wesley.

    Google Scholar 

  64. Porth, J.M., Xie, X.L. (1996) Petri Nets, A Tool for Design and Management of Manufacturing Systems. New York: John Wiley & Sons.

    Google Scholar 

  65. Ramadge, P., Wonham, W.M. (1987) Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization, vol.25. no.1, pp.206–230.

    Article  MATH  MathSciNet  Google Scholar 

  66. Ramadge, P., Wonham, W.M. (1987) Modular feedback logic for discrete event systems. SIAM Journal on Control and Optimization, vol.25, no.5, pp.1202–1218.

    Article  MathSciNet  Google Scholar 

  67. Ramadge, P., Wonham, W.M. (1989) The control of discrete event systems. Proceedings of the IEEE, vol.77, no.1, pp.81–89.

    Article  Google Scholar 

  68. Recalde, L., Teruel, E., Silva, M., (1997) Improving the decision power of rank theorems. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.3768–3773.

    Google Scholar 

  69. Reveliotis, S.A. (2005) Real-time Management of Resource Allocation Systems: A Discrete Event Systems Approach. New York: Springer.

    MATH  Google Scholar 

  70. Roszkowska, E., Wojcik, R. (1993) Problems of process ôw feasibility in FAS. In CIM in Process and Manufacturing Industries, Oxford: Pergamon Press, pp.115–120.

    Google Scholar 

  71. Roszkowska, E., Jentink, J. (1993) Minimal restrictive deadlock avoidance in FMSs. In Proc. European Control Conf., J. W. Nieuwenhuis, C. Pragman, and H. L. Trentelman, (Eds.), vol.2, pp. 530–534.

    Google Scholar 

  72. Silva, M., Teruel, E. (1996) A systems theory perspective of discrete event dynamic systems: The Petri net paradigm. In Symposium on Discrete Events and Manufacturing Systems, IMACS Multiconference, P. Borne, J. C. Gentina, E. Craye, and S. El Khattabi, (Eds.), Lille, France, pp.1–12.

    Google Scholar 

  73. Silva, M., Teruel, E., Colom, J.M. (1998) Linear algebraic and linear programming techniques for the analysis of place/transition net systems. In Lectures on Petri Nets I: Basic Models, Lectures Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.), pp.309– 373.

    Google Scholar 

  74. Singhal, M. (1989) Deadlock detection in distributed systems. IEEE Computer, vol.22, no.11, pp.37–48.

    Google Scholar 

  75. Thistle, J.G. (1996) Supervisory control of discrete event systems. Mathematical and Computer and Modeling, vol.23, no.11–12, pp.25–53.

    Article  MATH  MathSciNet  Google Scholar 

  76. Tricas, F., Martinez, J. (1995) An extension of the liveness theory for concurrent sequential processes competing for shared resources. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.3035–3040.

    Google Scholar 

  77. Tricas, F., García-Vallés, F., Colom, J.M., Ezpeleta, J. (1998) A structural approach to the problem of deadlock prevention in processes with shared resources. In Proc. 4th Workshop on Discrete Event Systems, pp.273–278.

    Google Scholar 

  78. Tricas, F., García-Vallés, F., Colom, J.M., Ezpeleta, J. (2000) An iterative method for deadlock prevention in FMS. In Proc. 5th Workshop on Discrete Event Systems, R. Boel and G.Stremersch (Eds.), pp.139–148.

    Google Scholar 

  79. Uzam, M. (2002) An optimal deadlock prevention policy for êxible manufacturing systems using Petri net models with resources and the theory of regions. International Journal of Advanced Manufacturing Technology, vol.19, no.3, pp.192–208.

    Google Scholar 

  80. Viswanadham, N., Narahari, Y., Johnson, T. (1990) Deadlock prevention and deadlock avoidance in êxible manufacturing systems using Petri net models. IEEE Transactions on Robotics and Automation, vol.6, no.6, pp.713–723.

    Article  Google Scholar 

  81. Viswanadham, N., Narahari, Y. (1992) Performance Modelling of Automated Manufacturing Systems. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  82. Wu, N. Q. (1999) Necessary and suffficient conditions for deadlock-free operation in êxible manufacturing systems using a colored Petri net model. IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol.29, no.2, pp.192–204.

    Article  Google Scholar 

  83. Wu, N.Q., Zhou, M.C. (2001) Avoiding deadlock and reducing starvation and blocking in automated manufacturing systems. IEEE Transactions on Robotics and Automation, vol.17, no.5, pp.658–669.

    Article  MathSciNet  Google Scholar 

  84. Wu, N.Q., Zhou, M.C. (2005) Modeling and deadlock avoidance of automated manufacturing systems with multiple automated guided vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol.35, no.6, pp.1193–1202.

    Article  MathSciNet  Google Scholar 

  85. Wysk, R.A., Yang, N.S., Joshi, S. (1994) Resolution of deadlocks in êxible manufacturing systems: avoidance and recovery approaches. Journal of Manufacturing Systems, vol.13, no.2, pp.128–138.

    Article  Google Scholar 

  86. Xie, X.L., Jeng, M.D. (1999) ERCN-merged nets and their analysis using siphons. IEEE Transactions on Robotics and Automation, vol.15, no.4, pp.692–703.

    Article  Google Scholar 

  87. Xing, K.Y., Hu, B.S., Chen, H.X. (1996) Deadlock avoidance policy for Petri-net modelling of êxible manufacturing systems with shared resources. IEEE Transactions on Automatic Control, vol.41, no.2, pp.289–295.

    Article  MATH  MathSciNet  Google Scholar 

  88. Zhou, M.C., DiCesare, F. (1991) Parallel and sequential exclusions for Petri net modeling for manufacturing systems. IEEE Transactions on Robotics and Automation, vol.7, no.4, pp.515– 527.

    Article  Google Scholar 

  89. Zhou, M.C., DiCesare, F. (1992) A hybrid methodology for synthesis of Petri nets for manufacturing systems. IEEE Transactions on Robotics and Automation, vol.8, no.3, pp.350–361.

    Article  Google Scholar 

  90. Zhou, M.C., DiCesare, F. (1993) Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Boston, MA: Kluwer.

    MATH  Google Scholar 

  91. Zhou, M.C. (Ed.) (1995) Petri Nets in Flexible and Agile Automation. Norwell, MA: Kluwer.

    MATH  Google Scholar 

  92. Zhou, M.C., Venkatesh, K. (1998) Modelling, Simulation and Control of Flexible Manufacturing Systems: A Petri Net Approach. Singapore: World Scientiffic.

    Google Scholar 

  93. Zhou, M.C., Fanti, M.P. (Eds.) (2005) Deadlock Resolution in Computer-Integrated Systems. New York: MarcelDekker.

    MATH  Google Scholar 

  94. Zouari, B., Barkaoui, K. (2003) Parameterized supervisor synthesis for a modular class of discrete event systems. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.1874– 1879.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Introduction. In: Deadlock Resolution in Automated Manufacturing Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84882-244-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-244-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-243-6

  • Online ISBN: 978-1-84882-244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics