Skip to main content

Fundamentals of Specialization Theory

  • Chapter
  • First Online:
Specialization of Quadratic and Symmetric Bilinear Forms

Part of the book series: Algebra and Applications ((AA,volume 11))

  • 927 Accesses

Abstract

We also allow the case dim φ = 0, standing for the unique bilinear form on the zero vector space, the form φ = 0. We agree that the form φ = 0 has good reduction and set λ *(φ) = 0. Problem 1.2. Is this definition meaningful? Up to isometry λ *(φ) should be independent of the choice of the matrix (c ij ). We shall later see that this is indeed the case, provided 2 ∉ m, so that L has characteristic ≠ 2. If L has characteristic 2, then λ *(φ) is well-defined up to “stable isometry” (see §1.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The case where K has only two elements, \(K = \mathbb{F}_2\), is not covered by the more general theorems there. The statement of Theorem1.11 for \(K = \mathbb{F}_2\) is trivial however, since K has only one square class \(\langle 1 \rangle\) and \(\langle 1,1 \rangle \sim 0\).

  2. 2.

    The letter W in the notation \({\lambda_W}\) refers to “Witt” or “weak”, see §1.1 and §1.7.

  3. 3.

    If \(E=(E,B)\) is a bilinear space, then \(-E\) denotes the space \((E,-B)\).

  4. 4.

    \(\varphi \otimes K\) is the form φ, considered over K instead of over k. If E is a bilinear space over k corresponding to \({\varphi}\), then \({K \otimes_k E}\)—as described in §1.3—is a bilinear space corresponding to \({\varphi \otimes K}\).

  5. 5.

    We do not make a notational distinction between the forms \({\left( {0 \atop 1} {1 \atop 0 } \right)}\) over the different fields occurring here.

  6. 6.

    In keeping with our earlier conventions, it would perhaps be better to write \(\varphi (x) = \frac{1}{2} \varphi (x, x)\). However, the factor \(\frac{1}{2}\) is not important for now.

  7. 7.

    In earlier works (especially [33]) \(K_{0}\) was always chosen to be k. From a technical point of view it is favourable to allow \(K_{0}\) to be an inessential extension of k, just as in [37].

  8. 8.

    The form \(\langle 1\rangle\) also counts as a Pfister form, more precisely a 0-fold Pfister form.

  9. 9.

    Strictly speaking, square classes are isomorphism classes of one-dimensional spaces.

  10. 10.

    In accordance with our earlier agreement, every \(E_{s}\) is considered as a quadratic subspace of E, \(E_s = (E_s, q \vert{E_s})\).

  11. 11.

    See § 1.2 for the term “stably isometric”.

References

  1. Knebusch, M., Rehmann, U.: Generic splitting towers and generic splitting preparation of quadratic forms. In: Quadratic forms and their applications (Dublin, 1999), Contemp. Math., vol. 272, pp. 173–199. Amer. Math. Soc., Providence, RI (2000)

    Book  Google Scholar 

  2. Kneser, M.: Witts Satz für quadratische Formen über lokalen Ringen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II pp. 195–203 (1972)

    Google Scholar 

  3. Milnor, J.: Symmetric inner products in characteristic 2. In: Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), pp. 59–75. Ann. of Math. Studies, No. 70. Princeton Univ. Press, Princeton, N.J. (1971)

    Google Scholar 

  4. Roy, A.: Cancellation of quadratic forms over commutative rings. J. Algebra 10, 286–298 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Witt, E.: Theorie der quadratischen Formen in beliebigen Körpern. J. reine angew. Math. 176, 31–44 (1936)

    Google Scholar 

  6. Kahn, B.: Formes quadratiques de hauteur et de degré 2. Indag. Math. (N.S.) 7(1), 47–66 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoffmann, D.W.: Splitting patterns and invariants of quadratic forms. Math. Nachr. 190, 149–168 (1998)

    Google Scholar 

  8. Knebusch, M.: Generic splitting of quadratic forms. II. Proc. London Math. Soc. (3) 34(1), 1–31 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Milnor, J., Husemoller, D.: Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 73. Springer-Verlag, New York (1973)

    MATH  Google Scholar 

  10. Knebusch, M.: Specialization of quadratic and symmetric bilinear forms, and a norm theorem. Acta Arith. 24, 279–299 (1973)

    MathSciNet  MATH  Google Scholar 

  11. Hoffmann, D.W.: Sur les dimensions des formes quadratiques de hauteur 2. C. R. Acad. Sci. Paris Sér. I Math. 324(1), 11–14 (1997)

    Article  MATH  Google Scholar 

  12. Knebusch, M.: Symmetric bilinear forms over algebraic varieties. In: G. Orzech (Ed.) Proc. Conf. Quadratic Forms, Kingston 1976, Queen’s Pap. pure appl. Math. 46, 103–283 (1977)

    Google Scholar 

  13. Hurrelbrink, J., Rehmann, U.: Splitting patterns of excellent quadratic forms. J. Reine Angew. Math. 444, 183–192 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Arf, C.: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. (Tl. 1.). J. Reine Angew. Math. 183, 148–167 (1941)

    MathSciNet  Google Scholar 

  15. Endler, O.: Valuation theory. Springer-Verlag, New York (1972)

    Book  MATH  Google Scholar 

  16. Bass, H.: Clifford algebras and spinor norms over a commutative ring. Amer. J. Math. 96, 156–206 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vishik, A.S.: On the dimensions of quadratic forms. Dokl. Akad. Nauk 373(4), 445–447 (2000)

    MathSciNet  Google Scholar 

  18. Knebusch, M.: Isometrien über semilokalen Ringen. Math. Z. 108, 255–268 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Springer, T.A.: Quadratic forms over fields with a discrete valuation. I. Equivalence classes of definite forms. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 352–362 (1955)

    MathSciNet  Google Scholar 

  20. Knebusch, M., Rosenberg, A., Ware, R.: Structure of Witt rings and quotients of Abelian group rings. Amer. J. Math. 94, 119–155 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Scharlau, W.: Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften, vol. 270. Springer-Verlag, Berlin (1985)

    Book  MATH  Google Scholar 

  22. Lam, T.Y.: The algebraic theory of quadratic forms. W. A. Benjamin, Inc., Reading, Mass. (1973)

    MATH  Google Scholar 

  23. Hoffmann, D.W.: On quadratic forms of height two and a theorem of Wadsworth. Trans. Amer. Math. Soc. 348(8), 3267–3281 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Knebusch, M.: Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen. S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/70, 93–157 (1969/1970)

    MathSciNet  Google Scholar 

  25. Hurrelbrink, J., Rehmann, U.: Splitting patterns of quadratic forms. Math. Nachr. 176, 111–127 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kneser, M.: Witts Satz über quadratische Formen und die Erzeugung orthogonaler Gruppen durch Spiegelungen. Math.-Phys. Semesterber. 17, 33–45 (1970)

    MathSciNet  MATH  Google Scholar 

  27. Fitzgerald, R.W.: Quadratic forms of height two. Trans. Amer. Math. Soc. 283(1), 339–351 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kneser, M.: Quadratische Formen. Springer (2002)

    Google Scholar 

  29. Cartan, H., Eilenberg, S.: Homological algebra. Princeton University Press, Princeton, N. J. (1956)

    MATH  Google Scholar 

  30. Bourbaki, N.: Eléments de Mathématique, Algèbre, Chap.9: Formes sesquilinéaires et formes quadratiques. Hermann, Paris (1959)

    Google Scholar 

  31. Knebusch, M., Scharlau, W.: Algebraic theory of quadratic forms, Generic methods and Pfister forms, DMV Seminar, vol. 1. Birkhäuser Boston, Mass. (1980). (Notes taken by Heisook Lee.)

    MATH  Google Scholar 

  32. Baeza, R.: Quadratic forms over semilocal rings. Lecture Notes in Mathematics. 655. Berlin-Heidelberg-New York: Springer-Verlag. VI, 199 p. (1978)

    MATH  Google Scholar 

  33. Bass, H.: Lectures on topics in algebraic K-theory. Notes by Amit Roy. Tata Institute of Fundamental Research Lectures on Mathematics, No. 41. Tata Institute of Fundamental Research, Bombay (1967)

    Google Scholar 

  34. Knebusch, M.: Generic splitting of quadratic forms. I. Proc. London Math. Soc. (3) 33(1), 65–93 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ribenboim, P.: Théorie des valuations, vol. 1964. Les Presses de l’Université de Montréal, Montreal, Que. (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Knebusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Knebusch, M., Unger, T. (2010). Fundamentals of Specialization Theory. In: Specialization of Quadratic and Symmetric Bilinear Forms. Algebra and Applications, vol 11. Springer, London. https://doi.org/10.1007/978-1-84882-242-9_1

Download citation

Publish with us

Policies and ethics