Skip to main content

Abstract

Spirometry is the most essential part of any pulmonary function study and provides the most information. In spirometry, a machine called a spirometer is used to measure certain lung volumes, called dynamic lung volumes. The two most important dynamic lung volumes measured are the forced vital capacity (FVC) and the forced expiratory volume in the 1st second (FEV1). This section deals with the definitions of these and other terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The flow can be measured directly by a pneumotachograph. The volume is obtained by integration of the flow signal. Alternatively, a volume sensing device (spirometer) measures volume and the flow is derived by differentiating the volume signal. Either method allows expression of the flow–volume curve.

  2. 2.

    As air in the lungs is at BTPS (body temperature pressure standard) but collected at ATPS (ambient temperature pressure standard), a correction factor has to be applied to obtain the BTPS volumes as these are the reported volumes.

  3. 3.

    Using a fixed value of the lower limit of normal (80%) may be accepted in children but may lead to some errors in adults.27

  4. 4.

    As can be seen in fi gure 1.14 the 95% confi dence limit may be used for normality as well. Values outside this range are then below the limit of normal (LLN). Many software programs for lung function testing can display the LLN and interpreting physicians may use this to determine normality. The predicted values used (reference equations) should be representative of the population being tested.

  5. 5.

    A spacer is an attachment to the MDI, which optimizes the delivery of salbutamol.

  6. 6.

    Increments of as high as 8% or 150 ml in FEV1 or FVC are likely to be within the variability of the measurement.36, 56

  7. 7.

    Another way is to think of the intrathoracic obstruction taking place during the ex-piration, while the extrathoracic during the in-spiration. So, intra- will take ex-, while extra- will take in-.

  8. 8.

    ** MIF50 & MEF50 are sometimes used to describe FIF50 & FEF50, respectively & they stand for the maximal inspiratory flow at 50% of FIVC and the maximal expiratory flow at 50% of FVC, respectively.

References

  1. Miller MR, Hankinson J, Brusasco V,. Standardisation of spirometry. Eur Respir J 2005;26:319–338.

    Article  PubMed  CAS  Google Scholar 

  2. American Thoracic Society. Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 1995;152:1107–1136.

    Google Scholar 

  3. Paoletti P, Pistelli G, Fazzi P,. Reference values for vital capacity and flow–volume curves from a general population study. Bull Eur Physiopathol Respir 1986;22:451–459.

    PubMed  CAS  Google Scholar 

  4. Brusasco V, Pellegrino R, Rodarte JR. Vital capacities during acute and chronic bronchoconstriction: dependence on flow and volume histories. Eur Respir J 1997;10:1316–1320.

    Article  PubMed  CAS  Google Scholar 

  5. Hansen LM, Pedersen OF, Lyager S, Naerra N. [Differences in vital capacity due to the methods employed]. Ugerkr Laeger 1983;145:2752–2756.

    CAS  Google Scholar 

  6. Swanney MP, Jensen RL, Crichton DA, Beckert LE, Cardno LA, Crapo RO. FEV(6) is an acceptable surrogate for FVC in the spirometric diagnosis of airway obstruction and restriction. Am J Respir Crit Care Med 2000;162:917–919.

    PubMed  CAS  Google Scholar 

  7. Hardie JA, Buist AS, Vollmer WM, Ellingsen I, Bakke PS, Morkve O. Risk of over-diagnosis of COPD in asymptomatic elderly never-smokers. Eur Respir J 2002;20:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  8. Hyatt RE, Scanlon PD, Nakamura M. Interpretation of Pulmonary Function Tests: A Practical Guide, 2nd edition. Lippincott Williams & Wilkins, Philadelphia, PA, 2003.

    Google Scholar 

  9. Hancox B, Whyte K. Pocket Guide to Lung Function Tests, 1st Edition. McGraw-Hill, Sydney, 2001.

    Google Scholar 

  10. Pellegrino R, Viegi G, Enright P,. Interpretative strategies for lung function tests. Eur Respir J 2005;26:948–968.

    Article  PubMed  CAS  Google Scholar 

  11. Flenley DC. Chronic obstructive pulmonary disease. Dis Mon 1988;34:537–599.

    PubMed  CAS  Google Scholar 

  12. Gardner RM, Clausen JL, Crapo RO,. Quality assurance in pulmonary function laboratories. Am Rev Respir Dis 1986;134:626–627.

    Google Scholar 

  13. Association for the Advancement of Medical Instrumentation, Standard for spirometers (draft), October 1980. AAMI Suite 602, 1901 N. Ft. Myer Drive, Arlington, VA 22209–1699.13. Association for the Advancement of Medical Instrumentation, Standard for spirometers (draft), October 1980. AAMI Suite 602, 1901 N. Ft. Myer Drive, Arlington, VA 22209–1699.

    Google Scholar 

  14. Miller MR,. General considerations for lung function testing. Eur Respir J 2005;26:153–161

    Article  PubMed  CAS  Google Scholar 

  15. Renzetti AD Jr. Standardization of spirometry. Am Rev Respir Dis 1979;119:831–838.

    Google Scholar 

  16. Morris AH, Kanner RE, Crapo RO, Gardner RM. Clinical pulmonary function testing: a manual of uniform laboratory procedures, 2nd Edition. Intermountain Thoracic Society, Salt Lake City, UT, 1984.

    Google Scholar 

  17. Smith AA, Gaensler EA. Timing of forced expiratory volume in one second. Am Rev Respir Dis 1975;112:882–885.

    Google Scholar 

  18. Hankinson JL, Gardner RM. Standard waveforms for spirometer testing. Am Rev Respir Dis 1982;126:362–364.

    PubMed  CAS  Google Scholar 

  19. Horvath EP Jr, ed. Manual of spirometry in occupational medicine. Division of Training and Manpower Development, National Institutes for Occupational Safety and Health, Cincinnati, OH, 1981.19. Horvath EP Jr, ed. Manual of spirometry in occupational medicine. Division of Training and Manpower Development, National Institutes for Occupational Safety and Health, Cincinnati, OH, 1981.

    Google Scholar 

  20. Stoller JK, Basheda S, Laskowski D, Goormastic M, McCarthy K. Trial of standard versus modified expiration to achieve end-of-test spirometry criteria. Am Rev Respir Dis 1993;148:275–280.

    PubMed  CAS  Google Scholar 

  21. Townsend MC. The effects of leaks in spirometers on measurement of pulmonary function. J Occup Med 1984;26:835–841.

    Article  PubMed  CAS  Google Scholar 

  22. Salzman SH. Pulmonary Function Testing. ACCP Pulmonary Board Review Course, Northbrook, IL, 2005:297–320.

    Google Scholar 

  23. Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity. ATS Workshop on Lung Volume Measurements. Official Statement of The European Respiratory Society. Eur Respir J 1995;8:492–506.

    Article  PubMed  CAS  Google Scholar 

  24. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J 1993;6 Suppl 16:S5–S40.

    Google Scholar 

  25. Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC. Standardization of the measurement of transfer factor (diffusing capacity). Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J 1993;6 Suppl 16:S41–S52.

    Google Scholar 

  26. Solberg HE, Grasbeck R. Reference values. Adv Clin Chem 1989;27:1–79.

    Article  PubMed  CAS  Google Scholar 

  27. American Thoracic Society. Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis 1991;144:1202–1218.

    Google Scholar 

  28. Parker JM, Dillard TA, Phillips YY. Arm span-height relationships in patients referred for spirometry. Am J Respir Crit Care Med 1996;154:533–536.

    PubMed  CAS  Google Scholar 

  29. Korotzer B, Ong S, Hansen JE. Ethnic differences in pulmonary function in healthy nonsmoking Asian-Americans and European-Americans. Am J Respir Crit Care Med 2000;161:1101–1108.

    PubMed  CAS  Google Scholar 

  30. Sharp DS, Enright PL, Chiu D, Burchfiel CM, Rodriguez BL, Curb JD. Reference values for pulmonary function tests of Japanese-American men aged 71–90 years. Am J Respir Crit Care Med 1996;153:805–811.

    PubMed  CAS  Google Scholar 

  31. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS, GOLD Scientific Committee. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001;163:1256–1276.

    PubMed  CAS  Google Scholar 

  32. American Thoracic Society. Evaluation of impairment/disability secondary to respiratory disorders. Am Rev Respir Dis 1986;133:1205–1209.

    Google Scholar 

  33. American Medical Association. Guides to the Evaluation of Permanent Impairment, 4th Edition. American Medical Association, Chicago, IL, 1995.

    Google Scholar 

  34. Aaron SD, Dales RE, Cardinal P. How accurate is spirometry at predicting restrictive impairment. Chest 1999;115:869–873.

    Article  PubMed  CAS  Google Scholar 

  35. Glady CA, Aaron SD, Lunau M, Clinch J, Dales RE. A spirometry-based algorithm to direct lung function testing in the pulmonary function laboratory. Chest 2003;123:1939–1946.

    Article  PubMed  Google Scholar 

  36. Guyatt GH, Townsend M, Nogradi S, Pugsley SO, Keller JL, Newhouse MT. Acute response to bronchodilator, an imperfect guide for bronchodilator therapy in chronic airflow limitation. Arch Intern Med 1988;148:1949–1952.

    Article  PubMed  CAS  Google Scholar 

  37. Brand PL, Quanjer PhH, Postma DS, et al. Interpretation of bronchodilator response in patients with obstructive airways disease. Thorax 1992;47:429–436.

    Article  Google Scholar 

  38. Coates AL, Allen PD, MacNeish CF, Ho SL, Lands LC. Effect of size and disease on expected deposition of drugs administered using jet nebulization in children with cystic fibrosis. Chest 2001;119:1123–1130.

    Article  PubMed  CAS  Google Scholar 

  39. Coates AL, Ho SL. Drug administration by jet nebulization. Pediatr Pulmonol 1998;26:412–423.

    Article  PubMed  CAS  Google Scholar 

  40. Newman SP, Clark AR, Talaee N, Clark SW. Pressurized aerosol deposition in the human lung with and without an “open” spacer device. Thorax 1989;44:706–710.

    Article  PubMed  CAS  Google Scholar 

  41. Tal A, Golan H, Grauer N, Aviram M, Albin D, Quastel MR. Deposition pattern of radiolabeled salbutamol inhaled from a meter-dose inhaler by means of a spacer with mask in young children with airway obstruction. J Pediatr 1996;128:479–484.

    Article  PubMed  CAS  Google Scholar 

  42. Newhouse MT. Asthma therapy with aerosols: are nebulizers obsolete? A continuing controversy. J Pediatr 1999;135:5–8.

    Article  PubMed  CAS  Google Scholar 

  43. Coates AL, MacNeish CF, Lands LC, Meisner D, Kelemen S, Vadas EB. A comparison of the availability of tobramycin for inhalation from vented versus unvented nebulizers. Chest 1998;113:951–956.

    Article  PubMed  CAS  Google Scholar 

  44. Devadason SG, Everard ML, Linto JM, LeSouef PN. Comparison of drug delivery form conventional versus “Venturi” nebulizers. Eur Respir J 1997;10:2479–2483.

    Article  PubMed  CAS  Google Scholar 

  45. Leach CL, Davidson PJ, Hasselquist BE, Boudreau RJ. Lung deposition of hydofluoroalkane-134a beclomethasone is greater than that of chlorofluorocarbon fluticasone and chlorofluorocarbon beclomethasone: a cross-over study in healthy volunteers. Chest 2002;122:510–516.

    Article  PubMed  CAS  Google Scholar 

  46. Cerveri I, Pellegrino R, Dore R,. Mechanisms for isolated volume response to a bronchodilator in patients with COPD. J Appl Physiol 2000;88:1989–1995.

    PubMed  CAS  Google Scholar 

  47. Empey DW. Assessment of upper airways obstruction. BMJ 1972;3:503–505.

    Article  PubMed  CAS  Google Scholar 

  48. Bates DV. Respiratory Function in Disease, 3rd Edition. WB Saunders, Philadelphia, 1989.

    Google Scholar 

  49. Wilson AF, ed. Pulmonary Function Testing, Indications and Interpretations. Grune & Stratton, Orlando, FL, 1985.49. Wilson AF, ed. Pulmonary Function Testing, Indications and Interpretations. Grune & Stratton, Orlando, FL, 1985.

    Google Scholar 

  50. Pride NB, Macklem PT. Lung mechanics in disease. In: Macklem PT, Mead J, eds. Handbook of Physiology. The Respiratory System. Mechanics of Breathing. Section 3, Vol. III, Part 2. American Physiological Society, Bethesda, MD, 1986;659–692.

    Google Scholar 

  51. Miller MR, Pincock AC, Oates GD, Wilkinson R, Skene-Smith H. Upper airway obstruction due to goitre: detection, prevalence and results of surgical management. Q J Med 1990;74:177–188.

    PubMed  CAS  Google Scholar 

  52. Miller RD, Hyatt RE. Obstructing lesions of the larynx and trachea. Mayo Clin Proc 1969;44:145–161.

    PubMed  CAS  Google Scholar 

  53. Pedersen OF, Ingram RH Jr. Configuration of maximum expiratory flow–volume curve: model experiments with physiological implications. J Appl Physiol 1985;58:1305–1313.

    PubMed  CAS  Google Scholar 

  54. Miller MR, Pedersen OF. Peak flow meter resistance decreases peak expiratory flow in subjects with COPD. J Appl Physiol 2000;89:283–290.

    PubMed  CAS  Google Scholar 

  55. Gibson GJ. Central airway obstruction. In: Clinical Tests of Respiratory Function, 2nd Edition. Chapman & Hall, London, 1996;194–202.

    Google Scholar 

  56. Lorber DB, Kaltenborn W, Burrows B. Responses to isoproterenol in a general population sample. Am Rev Respir Dis 1978;118:855–861.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pearce Wilcox .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Altalag, A., Road, J., Wilcox, P. (2009). Spirometry. In: Pulmonary Function Tests in Clinical Practice. Springer, London. https://doi.org/10.1007/978-1-84882-231-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-231-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-230-6

  • Online ISBN: 978-1-84882-231-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics