Skip to main content

Network Evolution: Theory and Mechanisms

  • Chapter
  • First Online:

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

In this chapter, we intend to give a review on some of the important network models that are introduced in recent years. The aim of all of these models is to imitate the real-world network properties. Real-world networks exhibit behaviors such as small-world, scale-free, and high clustering coefficient. One of the significant models known as Barabási–Albert model utilizes preferential attachment mechanism as a main mechanism for power-law networks generation. Ubiquity of preferential attachment in network evolution has been proved for many kinds of networks. Additionally, one can generalize functional form of the preferential attachment mathematically, where it provides three different regimes. Besides, in real-world networks, there exist natural constraints such as age or cost that one can consider; however, all of these models are classified as global models. Another important family of models that rely on local strategies attempt to realize network evolution mechanism. These models generate power-law network through making decisions based on the local properties of the networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Finally, you can see a nice applet of the model at http://cmol.nbi.dk/models/inforew/inforew.html

References

  1. Erdős P, Rényi A (1959) On random graphs. Publ Math 6:290–297

    Google Scholar 

  2. Erdős P, Rényi A (1959) Graph theory and probability. Can Math Soc CJM 11:34–38

    Google Scholar 

  3. Bollobas B (2001) Random graphs, 2nd edn. Cambridge University Press, Cambridge (0521797225)

    Google Scholar 

  4. Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA (PNAS) 97:11149–11152, 0027–8424

    Google Scholar 

  5. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512

    MathSciNet  Google Scholar 

  6. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Am Phys Soc Rev Modern Phys 74(1):47–97

    MATH  Google Scholar 

  7. Simon HA (1955) On a class of skew distribution functions. Biometrika 42:425–440

    Article  MATH  MathSciNet  Google Scholar 

  8. Chakrabarti D, Faloutsos C (2006) Graph mining: Laws, generators and algorithms. ACM Comput Surv 38:1–69

    Google Scholar 

  9. Xu X, Liu F, Liu L (2005) Mechanism for linear preferential attachment in growing networks. Physica A 356:662–672

    Google Scholar 

  10. Albert R, Barabási A-L (2000) Topology of evolving networks: Local events and universality. Phys Rev Lett 85:5234–5237

    Google Scholar 

  11. Vázquez A (2003) Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Phys Rev E 67:056104.5

    Google Scholar 

  12. Rozenfeld HD, Avraham DB (2004) Designer nets from local strategies. Phys Rev E 70:056107

    Google Scholar 

  13. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the Internet topology. ACM Press, In: SIGCOMM ’99: Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication, vol 29, pp 251–262

    Google Scholar 

  14. Govindan R, Tangmunarunkit H (2000) Heuristics for Internet map discovery. In: INFOCOM 2000. Nineteenth annual joint conference of the IEEE computer and communications societies. Proc IEEE 3:1371–1380

    Google Scholar 

  15. Bornholdt S, Schuster HG (2003) Handbook of graphs and networks: From the genome to the internet. Wiley-VCH, Berlin (3-527-40336-1)

    Google Scholar 

  16. Dorogovtsev SN, Mendes JFF (2001) Effect of the accelerated growth of communications networks on their structure. Phys Rev E 63:025101

    Google Scholar 

  17. Gagen MJ, Mattick JS (2005) Accelerating, hyperaccelerating, and decelerating networks. Phys Rev E 72:016123

    Google Scholar 

  18. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440–442

    Article  Google Scholar 

  19. Barabási A-L, Jeong H, Neda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A Statist Mech Appl 311:590–614

    MATH  Google Scholar 

  20. Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46:323–351

    Google Scholar 

  21. Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–482

    Article  Google Scholar 

  22. Erdős P, Rényi A (1960) Random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  23. Chung F, Lu L (2002) The average distances in random graphs with given expected degrees. Proc Natl Acad Sci USA (PNAS) 99:15879–15882

    MATH  MathSciNet  Google Scholar 

  24. Capocci A, Servedio VDP, Colaiori F, Buriol LS, Donato D, Leonardi S, Caldarelli G (2006) Preferential attachment in the growth of social networks: The case of Wikipedia. Phys Rev E 74:036116

    Google Scholar 

  25. Jeong H, Néda Z, Barabási A-L (2003) Measuring preferential attachment in evolving networks. Europhys Lett 61:567–572

    Google Scholar 

  26. Eli E, Erez YL (ed) (2003) Preferential attachment in the protein network evolution. Ame Phys Soc Phys Rev Lett 91:1387 01

    Google Scholar 

  27. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Structure of growing networks: Exact solution of the Barabási–Albert model. Phys Rev Lett 85:4633–4636

    Google Scholar 

  28. Dorogovtsev SN, Mendes JFF (2001) Scaling properties of scale-free evolving networks: Continuous approach. Phys Rev E 63:056125

    Google Scholar 

  29. Kaiser M (2008) Mean clustering coefficients: The role of isolated nodes and leafs on clustering measures for small-world networks. Inst Phys Publ New J Phys 10:083042

    Google Scholar 

  30. Milgram S (1967) The small world phenomenon. Psychol Today 2:60–67

    Google Scholar 

  31. Bollobás B, Riordan O (2004) The diameter of a scale-free random graph. Combinatorica 24:5–34

    Article  MATH  MathSciNet  Google Scholar 

  32. Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64:026118

    Google Scholar 

  33. Krapivsky PL, Redner S (2001) Organization of growing random networks. Phys Rev E 63:066123

    Google Scholar 

  34. Barrat A, Pastor-Satorras R (2005) Rate equation approach for correlations in growing network models. Phys Rev E 71:036127

    Google Scholar 

  35. Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629+

    Google Scholar 

  36. Bianconi G, Barabási A-L (2001) Bose–Einstein condensation in complex networks. Phys Rev Lett 86:5632–5635

    Google Scholar 

  37. Redner S (1998) How popular is your paper? An empirical study of the citation distribution. Eur Phys J B 4:131–134

    Google Scholar 

  38. Dorogovtsev SN, Mendes JFF (2000) Evolution of networks with aging. Phys Rev E 62:1842–1845

    Google Scholar 

  39. Ergün G, Rodgers GJ (2002) Growing random networks with fitness. Phys A 303:261–272

    MATH  Google Scholar 

  40. Bianconi G, Barabási A-L (2001) Competition and multiscaling in evolving networks. Europhys Lett 54:436–442

    Google Scholar 

  41. Albert R, Barabási A-L (2000) Topology of evolving networks: Local events and universality. Phys Rev Lett 85(24):5234–5237

    Google Scholar 

  42. Rozenfeld HD, Avraham DB (2004) Designer nets from local strategies. Phys Rev E 70:056107

    Google Scholar 

  43. Vázquez A (2002) Degree correlations and clustering hierachy in networks: Measures, origin and consequences. PhD thesis, Institute for Advanced Study, Einstein Drive Princeton, New Jersey 08540, USA

    Google Scholar 

  44. Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins AS, Upfal E (2000) The Web as a graph. In: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium. ACM, Dallas, TX, pp 1–10

    Google Scholar 

  45. Krapivsky PL, Redner S (2005) Network growth by copying. Phys Rev E 71:036118

    MathSciNet  Google Scholar 

  46. Donato D, Laura L, Leonardi S, Millozzi S (2004) Large scale properties of the webgraph. Eur J Phys B 38:239–243

    Google Scholar 

  47. [Online] STANFORD DIGITAL LIBRARIES TECHNOLOGIES. http://www-diglib.stanford.edu

  48. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Growing network with heritable connectivity of nodes. http://arxiv.org/abs/cond-mat/0011077v1

    Google Scholar 

  49. Wagner A (2003) How the global structure of protein interaction networks evolves. Roy Soc Publ Proc Roy Soc B Biol Sci 270:457–466, 1514

    Google Scholar 

  50. Ispolatov I, Krapivsky PL, Yuryev A (2005) Duplication-divergence model of protein interaction network. Phys Rev E 71:6

    Google Scholar 

  51. Farid N, Christensen K (2006) Evolving networks through deletion and duplication. New J Phys 8:1367–2630

    Google Scholar 

  52. Evlampiev K, Isambert H (2007) Modeling protein network evolution under genome duplication and domain shuffling. BMC Syst Biol 1:49

    Google Scholar 

  53. Vázquez A, Flammini A, Maritan A, Vespignani A (2003) Modeling of protein interaction networks. Complexus 1:38–44

    Google Scholar 

  54. Teichmann SA, Babu MM (2004) Gene regulatory network growth by duplication. Nat Genet 36:492–496

    Google Scholar 

  55. Enemark J, Sneppen K (2007) Gene duplication models for directed networks with limits on growth. Journal of Statistical Mechanics: Theory and Experiment: P11007. doi: 10.1088/1742-5468/2007/11/P11007

    Google Scholar 

  56. Song C, Havlin S, Makse HA (2006) Origins of fractality in the growth of complex networks. Nat Phys 2:275–281

    Google Scholar 

  57. Song C, Havlin S, Makse HA (2005) Nature 433:392–395

    Article  Google Scholar 

  58. Kim JS, Goh K-I, Kahng B, Kim D (2007) Fractality and self-similarity in scale-free networks. New J Phys 9:177

    Google Scholar 

  59. Barabási A-L, Ravasz E, Vicsek T (2001) Deterministic scale-free networks. Physica A 299:559–564

    MATH  Google Scholar 

  60. Dorogovtsev SN, Goltsev AV, Mendes JFF (2002) Pseudofractal scale-free web. Phys Rev E 65:066122

    Google Scholar 

  61. Iguchi K, Yamada H (2005) Exactly solvable scale-free network model. Phys Rev E 71:036144

    MathSciNet  Google Scholar 

  62. Zhang Z, Rong L, Zhou S (2007) A general geometric growth model for pseudofractal scale-free web. Physica A 377:329–339

    Google Scholar 

  63. Jung S, Kim S, Kahng B (2002) Geometric fractal growth model for scale-free networks. Phys Rev E 65:056101

    Google Scholar 

  64. Kim BJ, Trusina A, Minnhagen P, Sneppen K (2005) Self organized scale-free networks from merging and regeneration. Eur Phys J B 43:369–372

    Google Scholar 

  65. Baiesi M, Manna SS (2003) Scale free networks from a Hamiltonian dynamics. Phys Rev E 68:047103

    Google Scholar 

  66. Yan G, Zhou T, Jin Y-D, Fu Z-Q (2004) Self-organization induced scale-free networks. http://arxiv.org/abs/cond-mat/0408631

    Google Scholar 

  67. Perotti JI, Billoni OV, Tamarit FA, Chialvo DR, Cannas SA (2009) Emergent self-organized complex network topology out of stability constraints. Phys Rev Lett 103:108701

    Google Scholar 

  68. Rosvall M, Sneppen K (ed) (2006) Modeling self-organization of communication and topology in social networks. Phys Rev E 74:016108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Masoudi-Nejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Omidi, S., Masoudi-Nejad, A. (2010). Network Evolution: Theory and Mechanisms. In: Abraham, A., Hassanien, AE., Sná¿el, V. (eds) Computational Social Network Analysis. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-229-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-229-0_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-228-3

  • Online ISBN: 978-1-84882-229-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics