Skip to main content

Scheduling Activities in Wireless Sensor Networks

  • Chapter
  • First Online:
  • 1983 Accesses

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

We investigate scheduling activities in sensor networks; the materials covered are far beyond medium access control (MAC) protocols and the purpose is not to review specific or general purpose MAC approaches. Our purpose is more generic and we investigate scheduling strategies and techniques that could be applied to avoid interference, to prolong the network lifetime by reducing energy consumption, to optimize network performance by taking into account the underlying application communication patterns, to guarantee sensing coverage in monitoring tasks, and to achieve good levels of QoS. We examine scheduling under various interference models, including the traditional channel separation constraints model, the protocol model, and the physical Signal-to-Interference-plus-Noise-Ratio model. For each topic covered in this chapter, we survey the results and one or two representative works are examined in details as examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Gupta and P. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2):388–404, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Kredo II and P. Mohapatra. Medium access control in wireless sensor networks. Computer Networks, 51(4):961–994, 2007.

    Article  MATH  Google Scholar 

  3. T. Rappaport. Wirelss Communications, Principles and Practice. Prentice Hall, Upper Saddle River, NJ, 1996.

    Google Scholar 

  4. L. Wang and Y. Xiao. A survey of energy-efficient scheduling mechanisms in sensor networks. Mobile Networks and Applications, 11:723–740, 2006.

    Article  Google Scholar 

  5. I. Katzela and M. Naghshineh. Channel assignment schemes for cellular mobile telecommunications: a comprehensive survey. IEEE Personal Communications, 3(3):10–31, 1996.

    Article  Google Scholar 

  6. I. W. Akyildiz, Y. Su. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey. Computer Networks, 38(4):393–422, 2002.

    Google Scholar 

  7. O. Dousse, P. Mannersalo, and P. Thiran. Latency of wireless sensor networks with uncoordinated power saving mechanisms. In Proceedings of Fifth ACM international symposium on mobile ad hoc networking & computing (MobiHoc), 2004.

    Google Scholar 

  8. G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel. Delay efficient sleep scheduling in wireless sensor networks. In Proceedings of IEEE INFOCOM 2005.

    Google Scholar 

  9. W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of IEEE INFOCOM, 2002.

    Google Scholar 

  10. W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated, adaptive sleeping for wireless sensor networks. Technical Report ISI-TR-567, USC, Jan. 2003.

    Google Scholar 

  11. Worldsens, http://worldsens.citi.insa-lyon.fr/.

    Google Scholar 

  12. Chipcon Inc. http://www.chipcon.com/.

    Google Scholar 

  13. E. Jung and N. Vaidya. An energy efficient MAC protocol for wireless LANs. In Proceedings IEEE INFOCOM, 2002.

    Google Scholar 

  14. S. Singh and C. Raghavendra. PAMAS: Power aware multi-access protocol with signalling for ad hoc networks. SIGCOMM Computer. Communication. Review., 28(3):5–26, 1998.

    Article  Google Scholar 

  15. T. van Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for wireless sensor networks. In ACM Sensys, 2003.

    Google Scholar 

  16. R. Zheng, J. Hou, and L. Sha. Asynchronous wakeup for ad hoc networks. In Proceedings of Fourth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2003.

    Google Scholar 

  17. Q. Cao, T. Abdelzaher, T. He, and J. Stankovic. Towards optimal sleep scheduling in sensor networks for rare-event detection. In Proceedings of Fourth International Symposium on Information Processing in Sensor Networks (IPSN), 2005.

    Google Scholar 

  18. Y. Chen, E. Fleury, and V. Syrotiuk. Topology-transparent duty cycling for wireless sensor networks. In Proceedings of 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2007.

    Google Scholar 

  19. A. Keshavarzian, H. Lee, and L. Venkatraman. Wakeup scheduling in wireless sensor networks. In Proceedings of ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2006.

    Google Scholar 

  20. F. Koushanfar, N. Taft, and M. Potkonjak. Sleeping coordination for comprehensive sensing using isotonic regression and domatic partitions. In Proceedings of IEEE INFOCOM, 2006.

    Google Scholar 

  21. M. Miller and N. Vaidya. A MAC protocol to reduce sensor network energy consumption using a wakeup radio. IEEE Transactions on Mobile Computing, 4(3):228–242, 2005.

    Article  Google Scholar 

  22. Ö. Akan and I. Akyildiz. Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Transactions on Networks., 13(5):1003–1016, 2005.

    Article  Google Scholar 

  23. V. Rajendran, K. Obraczka, and J. Garcia-Luna-Aceves. Energy-efficient, collision-free medium access control for wireless sensor networks. Wireless Networks, 12(1):63–78, 2006.

    Article  Google Scholar 

  24. M. Sichitiu. Corss-layer scheduling for power efficiency in wireless sensor networks. In Proceedings of IEEE INFOCOM, 2004.

    Google Scholar 

  25. R. Subramanian and F. Fekri. Sleep scheduling and lifetime maximization in sensor networks: fundamental limits and optimal solutions. In Proceedings of Fifth International Conference on Information Processing in Sensor Networks (IPSN), 2006.

    Google Scholar 

  26. N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Wave scheduling and routing in sensor networks. ACM Transactions on Sensor Networks, 3(1):2, 2007.

    Google Scholar 

  27. P. Kyasanur and N. Vaidya. Capacity of multi-channel wireless networks: impact of number of channels and interfaces. In Proceedings of 11th Annual International Conference on Mobile Computing and Networking (MobiCom), 2005.

    Google Scholar 

  28. A. Keshavarz-Haddad, V. Ribeiro, and R. Riedi. Broadcast capacity in multihop wireless networks. In Proceedings of 12th Annual International Conference on Mobile Computing and Networking (MobiCom), 2006.

    Google Scholar 

  29. T. Moscibroda. The worst-case capacity of wireless sensor networks. In Proceedings of Sixth International Conference on Information Processing in Sensor Networks (IPSN), 2007.

    Google Scholar 

  30. T. Moscibroda, Y. Oswald, and R. Wattenhofer. How optimal are wireless scheduling protocols? In Proceedings of IEEE INFOCOM, 2007.

    Google Scholar 

  31. T. Moscibroda and R. Wattenhofer. The complexity of connectivity in wireless networks. In Proceedings of IEEE INFOCOM 2006.

    Google Scholar 

  32. T. Moscibroda, R. Wattenhofer, and A. Zollinger. Topology control meets SINR: the scheduling complexity of arbitrary topologies. In Proceedings of 12th Annual International Conference on Mobile Computing and Networking (MobiCom), 2006.

    Google Scholar 

  33. R. Battiti, A. Bertossi, and M. Bonuccelli. Assigning codes in wireless networks: bounds and scaling properties. Wirelen Networks, 5(3):195–209, 1999.

    Article  Google Scholar 

  34. A. Bertossi, C. Pinotti, and R. Tan. Efficient use of radio spectrum in wireless networks with channel separation between close stations. In Proceedings of Fourth international Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM), 2000.

    Google Scholar 

  35. G. Chang, W. Ke, D. Kuo, D. Liu, and R. Yeh. On L(d,1)-labeling of graphs. Discrete Mathematics, 220:57–66, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  36. I. Chlamtac and S. Pinter. Distributed nodes organization algorithm for channel access in a multihop dynamic radio network. IEEE Transactions on Computing, 36(6):728–737, 1987.

    Article  Google Scholar 

  37. J. Georges and D. Mauro. Labeling trees with a condition at distance two. Discrete Mathematics, 269:127–148, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  38. W. Hale. Frequency assignment: theory and application. In Proceedings of IEEE, volume 68, pp. 1497–1514, 1980.

    Google Scholar 

  39. J. Griggs and R.Yeh. Labeling graphs with a condition at distance 2. SIAM Journal on Discrete Mathematics, 5:586–595, 1992.

    Google Scholar 

  40. W. Wang, Y. Wang, X. Li, W. Song, and O. Frieder. Efficient interference-aware TDMA link scheduling for static wireless networks. In Proceedings of 12th Annual International Conference on Mobile Computing and Networking (MobiCom), 2006.

    Google Scholar 

  41. Y. Chen and E. Fleury. Backbone-based scheduling for data dissemination in wireless sensor networks with mobile sinks. In Proceedings of Fourth ACM SIGACT-SIGOPS International Workshop on Foundations of Mobile Computing (DIAL M-POMC), 2007.

    Google Scholar 

  42. IEEE Standard for Wireless LAN Medium Access Control and Physical Layer Specification, 802.11. 1999.

    Google Scholar 

  43. S. Kapp. 802.11a. more bandwidth without the wires. Internet Computing, IEEE, 6(4):75–79, 2002.

    Google Scholar 

  44. C. Chang and D. Kuo. The L(2,1)-labeling on graphs. SIAM Journal on Discrete Mathematics, 9:309–316, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  45. C. McDiarmid and B. Reed. Channel assignment and weighted coloring. Networks, 36(2):114–117, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  46. B. Clark, C. Colbourn, and D. Johnson. Unit disk graphs. Discrete Mathematics, 86(1-3):165–177, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  47. A. Gräf, M. Stumpf, and G. Weißenfels. On coloring unit disk graphs. Algorithmica, 20(3):277–293, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  48. C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM, 41(5):960–981, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  49. A. Bertossi and M. Bonuccelli. Code assignment for hidden terminal interference avoidance in multihop packet radio networks. IEEE/ACM Transactions on Networks, 3(4):441–449, 1995.

    Article  Google Scholar 

  50. H. Bodlaender, T. Kloks, R. Tan, and J. Leeuwen. Approximations for λ-coloring of graphs. In Proceedings STACS, 2000.

    Google Scholar 

  51. A. Gamst. Some lower bounds for a class of frequency assignment problems. IEEE Transactions on Vehiculor Technology, 35(1):8–14, 1986.

    Article  Google Scholar 

  52. C. Sung and W. Wong. A graph theoretic approach to the channel assignment problem in cellular systems. In Proceedings of IEEE 45th Vehicular Technology Conference, 1995.

    Google Scholar 

  53. D. Smith and S. Hurley. Bounds for the frequency assignment problem. Discrete Mathematics, 167–168:571–582, 1997.

    Article  MathSciNet  Google Scholar 

  54. J. Janssen and K. Kilakos. Tile covers, closed tours and the radio spectrum. Telecommunications Network Planning. Kluwer, Boston, MA, 1999.

    Google Scholar 

  55. J. Janssen, T. Wentzell, and S. Fitzpatrick. Lower bounds from tile covers for the channel assignment problem. SIAM Journal on Discrete Mathematics, 18(4):679–696, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  56. R. Yeh. Labeling graphs with a condition at distance two. PhD Thesis, University of South Carolina, 1990.

    Google Scholar 

  57. D. Král and R. Skrekovski. A theorem about the channel assignment problem. SIAM Jorunal on Discrete Mathematics, 16(3):426–437, 2003.

    Article  MATH  Google Scholar 

  58. D. Goncalves. On the l(p,1)-labeling of graphs. Discrete Mathematics and Theoretical Computer Science, AE:81–86, 2005.

    Google Scholar 

  59. A. Bertossi and C. Pinotti. Mappings for conflict-free access of paths in bidimensional arrays, circular lists, and complete trees. Journal of Paralled and Distibuted Computing, 62(8):1314–1333, 2002.

    Article  MATH  Google Scholar 

  60. J. Georges and D. Mauro. Generalized vertex labelings with a condition at distance two. Congressus Numerantium, 109:141–159, 1995.

    MATH  MathSciNet  Google Scholar 

  61. T. Calamoneri and R. Petreschi. L(h, 1)-labeling subclasses of planar graphs. Journal of Parallel and Distributed Computing, 64:414–426, 2004.

    Article  MATH  Google Scholar 

  62. J. Janssen. Channel Assignment and Graph Labeling. Wiley., New York, NY, 2002.

    Google Scholar 

  63. R. Yeh. A survey on labeling graphs with a condition at distance two. Discrete Mathematics, 306:1217–1231, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  64. Y. Chen and E. Fleury. A distributed policy scheduling for wireless sensor networks. In Proceedings of IEEE INFOCOM, 2007.

    Google Scholar 

  65. N. Li, J. Hou, and L. Sha. Design and analysis of an MST-based topology control algorithm. In Proceedings of IEEE INFOCOM, 2003.

    Google Scholar 

  66. B. Awerbuch and R. Gallager. A new distributed algorithm to find breadth first search trees. IEEE Transactions on Information Theory, 33(3):315–322, 1987.

    Article  MATH  Google Scholar 

  67. O. Kasten. Energy Consumption, http://www.inf.ethz.ch/kasten/research/bathtub/energy consumption.html.

    Google Scholar 

  68. M. Stemm and R. Katz. Measuring and reducing energy consumption of networks interfaces in hand-held devices. IEICE Transactions on Communications, E80-B(8):1125–1131, 1997.

    Google Scholar 

  69. S. Ganeriwal, D. Ganesan, H. Shim, V. Tsiatsis, and M. B. Srivastava. Estimating clock uncertainty for efficient duty-cycling in sensor networks. In Proceedings of Third International Conference on Embedded Networked Sensor Systems (SenSys), 2005.

    Google Scholar 

  70. G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-inspired sensor network synchronicity with realistic radio effects. In Proceedings of Third International Conference on Embedded Networked Sensor Systems (SenSys), 2005.

    Google Scholar 

  71. W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networks, 12(3):493–506, 2004.

    Article  Google Scholar 

  72. A. El-Hoiydi and J. Decotignie. WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. In ALGOSENSORS, 2004.

    Google Scholar 

  73. J. Hill and D. Culler. MICA: A wireless platform for deeply embedded networks. IEEE Micro, 22(6):12–24, 2002.

    Article  Google Scholar 

  74. J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless sensor networks. In Proceedings of Second International Conference on Embedded Networked Sensor Systems (SenSys), 2004.

    Google Scholar 

  75. S. Huang, P. Wan, C. Vu, Y. Li, and F. Yao. Nearly constant approximation for data aggregation scheduling in wireless sensor networks. In Proceedings of IEEE INFOCOM, 2007.

    Google Scholar 

  76. G. Lu, B. Krishnamachari, and C. Raghavendra. An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks. In Proceedings of 18th International Parallel and Distributed Processing symposium (IPDPS), 2004.

    Google Scholar 

  77. A. Gamal, J. Mammen, B. Prabhakar, and D. Shah. Throughput-delay trade-off in wireless networks. In Proceedings of IEEE INFOCOM, 2004.

    Google Scholar 

  78. D. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Chen, Y., Fleury, E. (2009). Scheduling Activities in Wireless Sensor Networks. In: Misra, S., Woungang, I., Misra, S. (eds) Guide to Wireless Sensor Networks. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-218-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-218-4_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-217-7

  • Online ISBN: 978-1-84882-218-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics