Skip to main content

Part of the book series: New Techniques in Surgery Series ((NEWTECHN,volume 7))

The ongoing quest to minimize the invasiveness of surgery is exemplified by robotic-assisted laparoscopic surgery, single-incision laparoscopic surgery, and even natural-orifice transluminal surgery. Surgeons and engineers are pushing the boundaries of technological advancement to allow the performance of complex procedures with minimal trauma to the patient. Miniaturization and robotic-assistance are key components of this progress, and in 2009, we are witnessing increasing enthusiasm for novel systems, which have moved out of the engineering laboratory and into the operating room. While the da Vinci® surgical system (Intuitive Surgical, Mountain View, CA, USA) heralded the first widely implemented generation of surgical “robotics,” it is clear that much greater technological advances are on the horizon, which will make systems like the da Vinci® look gargantuan by comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavalcanti A. Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine. IEEE Trans Nanotechnol. 2003;2(2):82–87

    Article  Google Scholar 

  2. Freitas RA, Jr. Nanomedicine - basic capabilities. www.nanomedicine.com. 1999. Ref Type: Internet Communication

  3. Cavalcanti A, Freitas RA, Jr. Nanorobotics control design: a collective behavior approach for medicine. IEEE Trans Nanobiosci. June 2005;4(2):133–140

    Article  Google Scholar 

  4. Murphy DG, Challacombe B, Khan MS, Dasgupta P. Robotic technology in urology. Postgrad Med J. November 1, 2006;82(973): 743–747

    CAS  Google Scholar 

  5. Yokobayashi Y, Weiss R, Arnold FH. Directed evolution of a genetic circuit. Proc Natl Acad Sci USA. December 24, 2002;99(26): 16587–16591

    CAS  Google Scholar 

  6. Schifferli KH, Schwartz JJ, Santos AT, Zhang S, Jacobson JM. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature. 2002; 415(6868):152–156

    Article  Google Scholar 

  7. Sand SB, Wiest O. Theoretical studies of mixed-valence transition metal complexes for molecular computing. J of Physical Chem. 2003;107(2):285–291

    Google Scholar 

  8. Cavalcanti A, Shirinzadeh B, Freitas RA, Jr., Kretly LC. Medical nanorobot architecture based on nanobioelectronics. Recent Patents on Nanotechnology. 1 ed. Bentham Science; 2007

    Google Scholar 

  9. Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed: Nanotechnol Biol Med. 2005; 1(2):101–109

    Article  CAS  Google Scholar 

  10. Mutoh K, Tsukahara S, Mitsuhashi J, Katayama K, Sugimoto Y. Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. Cancer Sci. November 2006;97(11):1198–1204

    Article  CAS  PubMed  Google Scholar 

  11. Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M. Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. November 16, 2006;25(54):7117–7130

    CAS  Google Scholar 

  12. Sonnenberg E, Godecke A, Walter B, Bladt F, Birchmeier C. Transient and locally restricted expression of the ros1 protooncogene during mouse development. EMBO J. December 1991;10(12): 3693–3702

    CAS  PubMed  Google Scholar 

  13. Trust Sanger Institute. Human chromosome 22 project overview. www.sanger.ac.uk/HGP/Chr22/. 2007. Ref Type: Internet Communication

    Google Scholar 

  14. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. February 26, 2007;26(9):1324–1337

    CAS  Google Scholar 

  15. Ray ME, Mehra R, Sandler HM, Daignault S, Shah RB. E-cadherin protein expression predicts prostate cancer salvage radiotherapy outcomes. J Urol. October 2006;176(4 Pt 1):1409–1414

    Article  CAS  PubMed  Google Scholar 

  16. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol. September 2001;19(9):856–860

    Article  CAS  PubMed  Google Scholar 

  17. Shulga OV, Zhou D, Demchenko AV, Stine KJ. Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform. Analyst. March 2008;133(3):319–322

    Article  CAS  PubMed  Google Scholar 

  18. Briman M, Artukovic E, Zhang L, Chia D, Goodglick L, Gruner G. Direct electronic detection of prostate-specific antigen in serum. Small. May 2007;3(5):758–762

    Article  CAS  PubMed  Google Scholar 

  19. Gommersall L, Shergill IS, Ahmed HU et al Nanotechnology and its relevance to the urologist. Eur Urol. August 2007;52(2):368–375

    CAS  Google Scholar 

  20. Johannsen M, Gneveckow U, Taymoorian K et al Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia. May 2007;23(3):315–323

    Article  CAS  PubMed  Google Scholar 

  21. Santhakumaran LM, Thomas T, Thomas TJ. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res. 2004;32(7):2102–2112

    Article  CAS  PubMed  Google Scholar 

  22. Thomas TP, Patri AK, Myc A et al In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules. November 2004;5(6):2269–2274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks to Dr Adriano Cavalcanti of the CAN Centre for Automation in Nanobiotech, Melbourne, Australia, for his advice in the preparation of this chapter and for his permission to use images reproduced here.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Murphy, D.G., Costello, A.J. (2010). Nanotechnology. In: Dasgupta, P., Fitzpatrick, J., Kirby, R., Gill, I.S. (eds) New Technologies in Urology. New Techniques in Surgery Series, vol 7. Springer, London. https://doi.org/10.1007/978-1-84882-178-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-178-1_30

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-177-4

  • Online ISBN: 978-1-84882-178-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics