Skip to main content

Chronic Tissue Expansion

  • Chapter
  • 840 Accesses

Part of the book series: New Techniques in Surgery Series ((NEWTECHN,volume 7))

Tissue substitutes for reconstructive procedures of the urinary tract are required in a variety of acquired and congenital pediatric and adult urological diseases. In the era of rapid growth of tissue engineering and stem cell research and clinical use, the tissue expansion field has fallen behind in the search for viable substitutes in the urologic field. This chapter shows the research and clinical work on tissue expansion in the search of urinary tissue employed in urine conduction and storage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McDougal WS. Metabolic complications of urinary intestinal diversion. J Urol. 1992;147:1199–1208

    CAS  PubMed  Google Scholar 

  2. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17:149–155

    Article  CAS  PubMed  Google Scholar 

  3. Elbahnasy AM, Shalhav A, Hoenig DM, Figenshau R, Clayman RV. Bladder wall substitution with synthetic and non-intestinal organic materials. J Urol. 1998;159:628–637

    Article  CAS  PubMed  Google Scholar 

  4. Snow BW, Cartwright PC. Bladder autoaugmentation. Urol Clin North Am. 1996;23:323–331

    Article  CAS  PubMed  Google Scholar 

  5. Dewan PA, Close CE, Byard RW, Ashwood PJ, Mitchell ME. Enteric mucosal regrowth after bladder augmentation using demucosalized gut segments. J Urol. 1997;158:1141–1146

    Article  CAS  PubMed  Google Scholar 

  6. Soergel TM, Cain MP, Misseri R, et al Transitional cell carcinoma of the bladder following augmentation cystoplasty for the neuropathic bladder. J Urol. 2004;172:1649–1651

    Article  PubMed  Google Scholar 

  7. Churchill BM, Aliabadi H, Landau EH, et al Ureteral bladder augmentation. J Urol. 1993;150:716–720

    CAS  PubMed  Google Scholar 

  8. Neumann CG. The expansion of an area of skin by progressive distention of a subcutaneous balloon; use of the method for securing skin for subtotal reconstruction of the ear. Plast Reconstr Surg. 1957;19:124–130

    Article  CAS  Google Scholar 

  9. De Filippo RE, Atala A. Stretch and growth: the molecular and physiologic influences of tissue expansion. Plast Reconstr Surg. 2002;109:2450–2462

    Article  PubMed  Google Scholar 

  10. Nguyen H, Park J, Peters C, et al Cell-specific activation of the HB-EGF and ErbB1 genes by stretch in primary human bladder cells. In Vitro Cell Dev Biol Anim. 1999;35:371

    Article  CAS  PubMed  Google Scholar 

  11. Persson K, Sando JJ, Tuttle JB, Steers WD. Protein kinase C in cyclic stretch-induced nerve growth factor production by urinary tract smooth muscle cells. Am J Physiol. 1995;269(4 Pt 1): C1018-C1024

    CAS  PubMed  Google Scholar 

  12. Steers WD, Kolbeck S, Creedon D, Tuttle JB. Nerve growth factor in the urinary bladder of the adult regulates neuronal form and function. J Clin Invest. 1991;88(5):1709–1715

    Article  CAS  PubMed  Google Scholar 

  13. O’Callaghan CO, Williams B. Mechanical strain increases matrix synthesis by human vascular smooth muscle cells: the role of TGF[beta]. J Hypertension. 1998;16(suppl 2):S16

    Google Scholar 

  14. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature (Lond.). 1992;359:843–845

    Article  CAS  Google Scholar 

  15. Takei T, Mills I, Arai K, et al Molecular basis for tissue expansion: clinical implications for the surgeon. Plast Reconstr Surg. 1998;102:247

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt C, Pommerenke H, Durr F, et al Mechanical stressing of integrin receptors induces enchanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem. 1998;273:5081

    Article  CAS  PubMed  Google Scholar 

  17. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260:1124

    Article  CAS  PubMed  Google Scholar 

  18. Ingber D, Dike L, Hansen L, et al Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis (Review). Int Rev Cytol. 1994;150:173–224

    Article  CAS  PubMed  Google Scholar 

  19. Vasioukhin V, Bauer C, Yin M, et al Directed actin polymerization is the driving force for epithelial cellcell adhesion. Cell. 2000; 100:209

    Article  CAS  PubMed  Google Scholar 

  20. Kirber MT, Walsh JV, Jr, Singer JJ. Stretchactivated ion channels in smooth muscle: a mechanism for the initiation of stretch-induced contraction. Pflugers Arch. 1988;412:339

    Article  CAS  PubMed  Google Scholar 

  21. Sachs F. Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem. 1991;104:57

    Article  CAS  PubMed  Google Scholar 

  22. Nakayama K. Calcium-dependent contractile activation of cerebral artery produced by quick stretch. Am J Physiol. 1982;242:H760

    CAS  PubMed  Google Scholar 

  23. Ruoslahti E. Stretching is good for a cell. Science. 1997;276:1345

    Article  CAS  PubMed  Google Scholar 

  24. Nishibe S, Wahl MI, Hernandez-Sotomayor SM, et al Increase of the catalytic activity of phospholipase C-gamma 1 by tyrosine phosphorylation. Science. 1990;250:1253

    Article  CAS  PubMed  Google Scholar 

  25. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995; 9:726

    CAS  PubMed  Google Scholar 

  26. Takei T, Rivas-Gotz C, Delling CA, et al Effect of strain on human keratinocytes in vitro. J Cell Physiol. 1997;173:64

    Article  CAS  PubMed  Google Scholar 

  27. Tenor H, Hatzelmann A, Wendel A, et al Identification of phosphodiesterase IV activity and its cyclic adenosine monophosphate-dependent up-regulation in a human keratinocyte cell line (HaCaT). J Invest Dermatol. 1995;105:70

    Article  CAS  PubMed  Google Scholar 

  28. Chien S, Li S, Shyy YJ. Effects of mechanical Vol. 109, No. 7/STRETCH AND GROWTH 2461 forces on signal transduction and gene expression in endothelial cells. Hypertension. 1998;31(1 pt 2):162

    CAS  PubMed  Google Scholar 

  29. Komuro I, Kaida T, Shibazaki Y, et al Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem. 1990;265:3595

    CAS  PubMed  Google Scholar 

  30. Bar-Sagi D, Feramisco JR. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science. 1986;233:1061

    Article  CAS  PubMed  Google Scholar 

  31. Desai MM, Gill IS, Goel M, et al Ureteral tissue balloon expansion for laparoscopic bladder augmentation: survival study. J Endourol. 2003;17:283–293

    Article  PubMed  Google Scholar 

  32. Lailas NG, Cilento B, Atala A. Progressive ureteral dilation for subsequent ureterocystoplasty. J Urol. 1996;156:1151–1153

    Article  CAS  PubMed  Google Scholar 

  33. Ikeguchi EF, Stifelman MD, Hensle TW. Ureteral tissue expansion for bladder augmentation. J Urol. 1998;159:1665–1668

    Article  CAS  PubMed  Google Scholar 

  34. Liatsikos EN, Dinlenc CZ, Kapoor R, Bernardo NO, Smith AD. Tissue expansion: a promising trend for reconstruction in urology. Endourol. 2000;14:93–96

    Article  CAS  PubMed  Google Scholar 

  35. McDougal WS. Metabolic complications of urinary intestinal diversion. J Urol 1992;147:1199

    CAS  PubMed  Google Scholar 

  36. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17:149

    Article  CAS  PubMed  Google Scholar 

  37. Elbahnasy AM, Shahlav A, Hoenig D, et al Bladder wall substitution with synthetic and nonintestinal organic materials. J Urol. 1998;159:628

    Article  CAS  PubMed  Google Scholar 

  38. Dewan PA, Close CE, Byard RW, et al Enteric mucosal regrowth after bladder augmentation using demucolized gut segments. J Urol. 1997;158:1141

    Article  CAS  PubMed  Google Scholar 

  39. Churchill BM, Aliabadi H, Landau EH, et al Ureteral bladder augmentation. J Urol. 1993;150:716

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Colombo Jr, J.R., Aron, M., Gill, I. (2010). Chronic Tissue Expansion. In: Dasgupta, P., Fitzpatrick, J., Kirby, R., Gill, I.S. (eds) New Technologies in Urology. New Techniques in Surgery Series, vol 7. Springer, London. https://doi.org/10.1007/978-1-84882-178-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-178-1_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-177-4

  • Online ISBN: 978-1-84882-178-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics