Skip to main content

Liver Regeneration and the Atrophy–Hypertrophy Complex

  • Chapter
  • First Online:
  • 1329 Accesses

Abstract

The Atrophy–Hypertrophy Complex (AHC) refers to the liver’s response to ­hepatocellular loss by the controlled restoration of liver parenchyma. Although atrophy can be due to various types of injury (e.g., toxins, ischemia, biliary obstruction, and partial hepatectomy), hypertrophy is relatively constant when there is a minimum amount of functional liver remnant. The AHC requires complex anatomic, histologic, cellular, and molecular processes, some of which have been defined. In patients in whom extended liver resection would result in liver insufficiency, preoperative portal vein embolization may increase the remnant liver ­sufficiently to permit aggressive resection. Continued basic science research may increase our understanding of the AHC to prevent or treat liver insufficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PVE:

Portal Vein Embolization

BCS:

Budd-Chiari Syndrome

I/R:

Ischemia/Reperfusion

MPT:

Mitochondrial Permeability Transition

TNFα:

Tumor Necrosis Factor Alpha

NO:

Nitric Oxide

iNOS:

Inducible Nitric Oxide Synthetase

MAPK:

Mitogen Activated Protein Kinase

HGF:

Hepatocytes Growth Factor

TGF-α:

Transforming Growth Factor Alpha

EGFR:

Epidermal Growth Factor Receptor

PI3K:

Phosphoinositide-3 Kinase

PVL:

Portal Vein Ligation

TGF-β:

Transforming Growth Factor Beta

ECM:

Extracellular Matrix

uPA:

Urokinase-like Plasminogen Activator

References

  1. Bellentani S, Hardison WG, Manenti F. Mechanisms of liver adaptation to prolonged selective biliary obstruction (SBO) in the rat. J Hepatol. 1985;1:525-535.

    Article  PubMed  CAS  Google Scholar 

  2. Rozanes I, Acunas B, Celik L, et al. CT in lobar atrophy of the liver caused by alveolar echinococcosis. J Comput Assist Tomogr. 1992;16:216-218.

    Article  PubMed  CAS  Google Scholar 

  3. Hadjis NS, Adam A, Gibson R, et al. Nonoperative approach to hilar cancer determined by the atrophy-hypertrophy complex. Am J Surg. 1989;157:395-399.

    Article  PubMed  CAS  Google Scholar 

  4. Hadjis NS, Blumgart LH. Role of liver atrophy, hepatic resection and hepatocyte hyperplasia in the development of portal hypertension in biliary disease. Gut. 1987;28:1022-1028.

    Article  PubMed  CAS  Google Scholar 

  5. Hadjis NS, Adam A, Blenkharn I, et al. Primary sclerosing cholangitis associated with liver atrophy. Am J Surg. 1989;158:43-47.

    Article  PubMed  CAS  Google Scholar 

  6. Jeyarajah DR. Recurrent pyogenic cholangitis. Curr Treat Options Gastroenterol. 2004;7:91-98.

    Article  PubMed  Google Scholar 

  7. Rana SS, Bhasin DK, Nanda M, et al. Parasitic infestations of the biliary tract. Curr Gastroenterol Rep. 2007;9:156-164.

    Article  PubMed  Google Scholar 

  8. Lorigan JG, Charnsangavej C, Carrasco CH, et al. Atrophy with compensatory hypertrophy of the liver in hepatic neoplasms: radiographic findings. AJR Am J Roentgenol. 1988;150:1291-1295.

    PubMed  CAS  Google Scholar 

  9. Ishida H, Naganuma H, Konno K, et al. Lobar atrophy of the liver. Abdom Imaging. 1998;23:150-153.

    Article  PubMed  CAS  Google Scholar 

  10. Vilgrain V, Condat B, Bureau C, et al. Atrophy-hypertrophy complex in patients with cavernous transformation of the portal vein: CT evaluation. Radiology. 2006;241:149-155.

    Article  PubMed  Google Scholar 

  11. Valla DC. The diagnosis and management of the Budd-Chiari syndrome: consensus and controversies. Hepatology. 2003;38:793-803.

    PubMed  Google Scholar 

  12. Denninger MH, Chait Y, Casadevall N, et al. Cause of portal or hepatic venous thrombosis in adults: the role of multiple concurrent factors. Hepatology. 2000;31:587-591.

    Article  PubMed  CAS  Google Scholar 

  13. Schaffner F, Bacchin PG, Hutterer F, et al. Mechanism of cholestasis. 4. Structural and biochemical changes in the liver and serum in rats after bile duct ligation. Gastroenterology. 1971;60:888-897.

    PubMed  CAS  Google Scholar 

  14. Gall JA, Bhathal PS. Origin and involution of hyperplastic bile ductules following total biliary obstruction. Liver. 1990;10:106-115.

    PubMed  CAS  Google Scholar 

  15. Schweizer W, Duda P, Tanner S, et al. Experimental atrophy/hypertrophy complex (AHC) of the liver: portal vein, but not bile duct obstruction, is the main driving force for the development of AHC in the rat. J Hepatol. 1995;23:71-78.

    Article  PubMed  CAS  Google Scholar 

  16. Hann LE, Getrajdman GI, Brown KT, et al. Hepatic lobar atrophy: association with ipsilateral portal vein obstruction. AJR Am J Roentgenol. 1996;167:1017-1021.

    PubMed  CAS  Google Scholar 

  17. Matthieu D, Kracht M, Zafrani E, Dhumeaux D, Vasile N. Budd-Chiari syndrome. In: Ferrucci J, Matthieu D, eds. Advances in Hepatobiliary Radiology. St. Louis: CV Mosby Company; 1990:3-28.

    Google Scholar 

  18. Lemasters JJ, Ji S, Thurman RG. Centrilobular injury following hypoxia in isolated, perfused rat liver. Science. 1981;213:661-663.

    Article  PubMed  CAS  Google Scholar 

  19. Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology. 2000;31:255-260.

    Article  PubMed  CAS  Google Scholar 

  20. Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun. 2003;304:463-470.

    Article  PubMed  CAS  Google Scholar 

  21. Gores GJ, Nieminen AL, Wray BE, et al. Intracellular pH during “chemical hypoxia” in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death. J Clin Invest. 1989;83:386-396.

    Article  PubMed  CAS  Google Scholar 

  22. Qian T, Nieminen AL, Herman B, et al. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol. 1997;273:C1783-C1792.

    PubMed  CAS  Google Scholar 

  23. Currin RT, Gores GJ, Thurman RG, et al. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB J. 1991;5:207-210.

    PubMed  CAS  Google Scholar 

  24. Kim JS, He L, Qian T, et al. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med. 2003;3:527-535.

    Article  PubMed  CAS  Google Scholar 

  25. Kim JS, Qian T, Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology. 2003;124:494-503.

    Article  PubMed  CAS  Google Scholar 

  26. Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976;251:5069-5077.

    PubMed  CAS  Google Scholar 

  27. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999;79:1127-1155.

    PubMed  CAS  Google Scholar 

  28. Kim JS, Jin Y, Lemasters JJ. Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2006;290:H2024-H2034.

    Article  PubMed  CAS  Google Scholar 

  29. Kim JS, Ohshima S, Pediaditakis P, et al. Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition. Hepatology. 2004;39:1533-1543.

    Article  PubMed  CAS  Google Scholar 

  30. Kim RD, Kim JS, Watanabe G, Mohuczy D, Behrns KE. Liver regeneration and the atrophy-hypertrophy complex. Semin Intervent Radiol. 2008;25:92-103.

    Article  PubMed  Google Scholar 

  31. Herman B, Nieminen AL, Gores GJ, et al. Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability. FASEB J. 1988;2:146-151.

    PubMed  CAS  Google Scholar 

  32. Nieminen AL, Gores GJ, Wray BE, et al. Calcium dependence of bleb formation and cell death in hepatocytes. Cell Calcium. 1988;9:237-246.

    Article  PubMed  CAS  Google Scholar 

  33. Gao W, Bentley RC, Madden JF, et al. Apoptosis of sinusoidal endothelial cells is a critical mechanism of preservation injury in rat liver transplantation. Hepatology. 1998;27:1652-1660.

    Article  PubMed  CAS  Google Scholar 

  34. Natori S, Selzner M, Valentino KL, et al. Apoptosis of sinusoidal endothelial cells occurs during liver preservation injury by a caspase-dependent mechanism. Transplantation. 1999;68:89-96.

    Article  PubMed  CAS  Google Scholar 

  35. Richter C, Schweizer M, Cossarizza A, et al. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996;378:107-110.

    Article  PubMed  CAS  Google Scholar 

  36. Leist M, Single B, Castoldi AF, et al. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185:1481-1486.

    Article  PubMed  CAS  Google Scholar 

  37. Galluzzi L, Larochette N, Zamzami N, et al. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene. 2006;25:4812-4830.

    Article  PubMed  CAS  Google Scholar 

  38. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675-1687.

    Article  PubMed  CAS  Google Scholar 

  39. Hatano E, Bradham CA, Stark A, et al. The mitochondrial permeability transition augments Fas-induced apoptosis in mouse hepatocytes. J Biol Chem. 2000;275:11814-11823.

    Article  PubMed  CAS  Google Scholar 

  40. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15:2922-2933.

    PubMed  CAS  Google Scholar 

  41. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727-730.

    Article  PubMed  CAS  Google Scholar 

  42. Zamzami N, Susin SA, Marchetti P, et al. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996;183:1533-1544.

    Article  PubMed  CAS  Google Scholar 

  43. Gujral JS, Bucci TJ, Farhood A, et al. Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: apoptosis or necrosis? Hepatology. 2001;33:397-405.

    Article  PubMed  CAS  Google Scholar 

  44. Kohli V, Madden JF, Bentley RC, et al. Calpain mediates ischemic injury of the liver through modulation of apoptosis and necrosis. Gastroenterology. 1999;116:168-178.

    Article  PubMed  CAS  Google Scholar 

  45. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60-66.

    Article  PubMed  CAS  Google Scholar 

  46. Barbason H, Bouzahzah B, Herens C, et al. Circadian synchronization of liver regeneration in adult rats: the role played by adrenal hormones. Cell Tissue Kinet. 1989;22:451-460.

    PubMed  CAS  Google Scholar 

  47. Kim RD, Stein GS, Chari RS. Impact of cell swelling on proliferative signal transduction in the liver. J Cell Biochem. 2001;83:56-69.

    Article  PubMed  CAS  Google Scholar 

  48. Lambotte L, Li B, Leclercq I, et al. The compensatory hyperplasia (liver regeneration) following ligation of a portal branch is initiated before the atrophy of the deprived lobes. J Hepatol. 2000;32:940-945.

    Article  PubMed  CAS  Google Scholar 

  49. Hortelano S, Dewez B, Genaro AM, et al. Nitric oxide is released in regenerating liver after partial hepatectomy. Hepatology. 1995;21:776-786.

    PubMed  CAS  Google Scholar 

  50. Rai RM, Lee FY, Rosen A, et al. Impaired liver regeneration in inducible nitric oxide synthase deficient mice. Proc Natl Acad Sci USA. 1998;95:13829-13834.

    Article  PubMed  CAS  Google Scholar 

  51. Garcia-Trevijano ER, Martinez-Chantar ML, Latasa MU, et al. NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. Gastroenterology. 2002;122:1355-1363.

    Article  PubMed  CAS  Google Scholar 

  52. Uemura T, Miyazaki M, Hirai R, et al. Different expression of positive and negative regulators of hepatocyte growth in growing and shrinking hepatic lobes after portal vein branch ligation in rats. Int J Mol Med. 2000;5:173-179.

    PubMed  CAS  Google Scholar 

  53. Kaido T, Yoshikawa A, Seto S, et al. Hepatocyte growth factor supply accelerates compensatory hypertrophy caused by portal branch ligation in normal and jaundiced rats. J Surg Res. 1999;85:115-119.

    Article  PubMed  CAS  Google Scholar 

  54. Kusaka K, Imamura H, Tomiya T, et al. Expression of transforming growth factor-alpha and -beta in hepatic lobes after hemihepatic portal vein embolization. Dig Dis Sci. 2006;51:1404-1412.

    Article  PubMed  CAS  Google Scholar 

  55. Vejda S, Cranfield M, Peter B, et al. Expression and dimerization of the rat activin subunits betaC and betaE: evidence for the ormation of novel activin dimers. J Mol Endocrinol. 2002;28:137-148.

    Article  PubMed  CAS  Google Scholar 

  56. Takamura K, Tsuchida K, Miyake H, et al. Activin and activin receptor expression changes in liver regeneration in rat. J Surg Res. 2005;126:3-11.

    Article  PubMed  CAS  Google Scholar 

  57. Akerman P, Cote P, Yang SQ, et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol. 1992;263:G579-G585.

    PubMed  CAS  Google Scholar 

  58. Yamada Y, Kirillova I, Peschon JJ, et al. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci USA. 1997;94:1441-1446.

    Article  PubMed  CAS  Google Scholar 

  59. Yokoyama S, Yokoyama Y, Kawai T, et al. Biphasic activation of liver regeneration-associated signals in an early stage after portal vein branch ligation. Biochem Biophys Res Commun. 2006;349:732-739.

    Article  PubMed  CAS  Google Scholar 

  60. Hayashi H, Nagaki M, Imose M, et al. Normal liver regeneration and liver cell apoptosis after partial hepatectomy in tumor necrosis factor-alpha-deficient mice. Liver Int. 2005;25:162-170.

    Article  PubMed  CAS  Google Scholar 

  61. Starkel P, Horsmans Y, Sempoux C, et al. After portal branch ligation in rat, nuclear factor kappaB, interleukin-6, signal transducers and activators of transcription 3, c-fos, c-myc, and c-jun are similarly induced in the ligated and nonligated lobes. Hepatology. 1999;29:1463-1470.

    Article  PubMed  CAS  Google Scholar 

  62. Kobayashi S, Nagino M, Yokoyama Y, et al. Evaluation of hepatic interleukin-6 secretion following portal vein ligation using a minimal surgical stress model. J Surg Res. 2006;135:27-33.

    Article  PubMed  CAS  Google Scholar 

  63. Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370:341-347.

    Article  PubMed  CAS  Google Scholar 

  64. Abdollah S, Ias-Silva M, Tsukazaki T. TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem. 1997;272:27678-27685.

    Article  PubMed  CAS  Google Scholar 

  65. Wu G, Chen YG, Ozdamar B, et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science. 2000;287:92-97.

    Article  PubMed  CAS  Google Scholar 

  66. Hocevar BA, Smine A, Xu XX, et al. The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. EMBO J. 2001;20:2789-2801.

    Article  PubMed  CAS  Google Scholar 

  67. Mishra L, Marshall B. Adaptor proteins and ubiquinators in TGF-beta signaling. Cytokine Growth Factor Rev. 2006;17:75-87.

    Article  PubMed  CAS  Google Scholar 

  68. Dong C, Li Z, Alvarez R Jr, et al. Microtubule binding to Smads may regulate TGF beta activity. Mol Cell. 2000;5:27-34.

    Article  PubMed  CAS  Google Scholar 

  69. Macias-Silva M, Li W, Leu JI, et al. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. J Biol Chem. 2002;277:28483-28490.

    Article  PubMed  CAS  Google Scholar 

  70. Stroschein SL, Wang W, Zhou S, et al. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science. 1999;286:771-774.

    Article  PubMed  CAS  Google Scholar 

  71. Albrecht JH, Meyer AH, Hu MY. Regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1/Sdi1) gene expression in hepatic regeneration. Hepatology. 1997;25:557-563.

    Article  PubMed  CAS  Google Scholar 

  72. Farges O, Belghiti J, Kianmanesh R, et al. Portal vein embolization before right hepatectomy: prospective clinical trial. Ann Surg. 2003;237:208-217.

    PubMed  Google Scholar 

  73. Lee KC, Kinoshita H, Hirohashi K, et al. Extension of surgical indications for hepatocellular carcinoma by portal vein embolization. World J Surg. 1993;17:109-115.

    Article  PubMed  CAS  Google Scholar 

  74. Azoulay D, Castaing D, Krissat J, et al. Percutaneous portal vein embolization increases the feasibility and safety of major liver resection for hepatocellular carcinoma in injured liver. Ann Surg. 2000;232:665-672.

    Article  PubMed  CAS  Google Scholar 

  75. Wakabayashi H, Ishimura K, Okano K, et al. Application of preoperative portal vein embolization before major hepatic resection in patients with normal or abnormal liver parenchyma. Surgery. 2002;131:26-33.

    Article  PubMed  Google Scholar 

  76. Imamura H, Shimada R, Kubota M, et al. Preoperative portal vein embolization: an audit of 84 patients. Hepatology. 1999;29:1099-1105.

    Article  PubMed  CAS  Google Scholar 

  77. Nagino M, Nimura Y, Kamiya J, et al. Changes in hepatic lobe volume in biliary tract cancer patients after right portal vein embolization. Hepatology. 1995;21:434-439.

    PubMed  CAS  Google Scholar 

  78. Xing X, Burgermeister E, Geisler F, et al. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49(3):979-988.

    Article  PubMed  CAS  Google Scholar 

  79. Ezaki H, Yoshida Y, Saji Y, et al. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice. Biochem Biophys Res Commun. 2009;378:68-72.

    Article  PubMed  CAS  Google Scholar 

  80. Mizuno S, Nimura Y, Suzuki H, et al. Portal vein branch occlusion induces cell proliferation of cholestatic rat liver. J Surg Res. 1996;60:249-257.

    Article  PubMed  CAS  Google Scholar 

  81. Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286-300.

    Article  PubMed  CAS  Google Scholar 

  82. Blasi F. Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays. 1993;15:105-111.

    Article  PubMed  CAS  Google Scholar 

  83. Mars WM, Liu ML, Kitson RP, et al. Immediate early detection of urokinase receptor after partial hepatectomy and its implications for initiation of liver regeneration. Hepatology. 1995;21:1695-1701.

    PubMed  CAS  Google Scholar 

  84. Liu ML, Mars WM, Zarnegar R, et al. Uptake and distribution of hepatocyte growth factor in normal and regenerating adult rat liver. Am J Pathol. 1994;144:129-140.

    PubMed  CAS  Google Scholar 

  85. Shimizu M, Hara A, Okuno M, et al. Mechanism of retarded liver regeneration in plasminogen activator-deficient mice: impaired activation of hepatocyte growth factor after Fas-mediated massive hepatic apoptosis. Hepatology. 2001;33:569-576.

    Article  PubMed  CAS  Google Scholar 

  86. Gordon GJ, Coleman WB, Grisham JW. Temporal analysis of hepatocyte differentiation by small hepatocyte-like ­progenitor cells during liver regeneration in retrorsine-exposed rats. Am J Pathol. 2000;157:771-786.

    Article  PubMed  CAS  Google Scholar 

  87. Ruddell RG, Knight B, Tirnitz-Parker JE, et al. Lymphotoxin-beta receptor signaling regulates hepatic stellate cell function and wound healing in a murine model of chronic liver injury. Hepatology. 2009;49:227-239.

    Article  PubMed  CAS  Google Scholar 

  88. Roskams TA, Libbrecht L, Desmet VJ. Progenitor cells in diseased human liver. Semin Liver Dis. 2003;23:385-396.

    Article  PubMed  CAS  Google Scholar 

  89. Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422:897-901.

    Article  PubMed  CAS  Google Scholar 

  90. Sugimoto H, Yang C, LeBleu VS, et al. BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB J. 2007;21:256-264.

    Article  PubMed  CAS  Google Scholar 

  91. Ando K, Miyazaki M, Shimizu H, et al. Beneficial effects of prostaglandin E(1) incorporated in lipid microspheres on liver injury and regeneration after 90% partial hepatectomy in rats. Eur Surg Res. 2000;32:155-161.

    Article  PubMed  CAS  Google Scholar 

  92. Gatzidou E, Kouraklis G, Theocharis S. Insights on augmenter of liver regeneration cloning and function. World J Gastroenterol. 2006;12:4951-4958.

    PubMed  CAS  Google Scholar 

  93. Yuan H, Zhang H, Wu X, et al. Hepatocyte-specific deletion of Cdc42 results in delayed liver regeneration after partial hepatectomy in mice. Hepatology. 2009;49:240-249.

    Article  PubMed  CAS  Google Scholar 

  94. Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol. 2003;284:G15-G26.

    PubMed  CAS  Google Scholar 

  95. Furst G, Schulte am EJ, Poll LW. Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experience. Radiology. 2007;243:171-179.

    Article  PubMed  Google Scholar 

  96. Dorrell C, Grompe M. Liver repair by intra- and extrahepatic progenitors. Stem Cell Rev. 2005;1:61-64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. Behrns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kim, R.D., Kim, JS., Behrns, K.E. (2011). Liver Regeneration and the Atrophy–Hypertrophy Complex. In: Madoff, D., Makuuchi, M., Nagino, M., Vauthey, JN. (eds) Venous Embolization of the Liver. Springer, London. https://doi.org/10.1007/978-1-84882-122-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-122-4_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-121-7

  • Online ISBN: 978-1-84882-122-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics