Skip to main content

The Molecular Basis of Joint Hypermobility

  • Chapter
  • First Online:
Hypermobility of Joints

Abstract

The ability of joints to undergo repeated and rapid movements is attributable to the unique mechanical properties of the extracellular matrix (ECM) of the joint capsule and surrounding ligaments and tendons. A delicate balance exists between ‘stiffness’ and ‘elasticity’ of these tissues. Stiffness comes from very long collagen fibrils that are arranged in elaborate architectures such as parallel bundles in tendon (Fig. 3.1), orthogonal lattices in the cornea and basket-weave in skin, depending on the mechanical requirements of the tissues in which they occur. Elasticity originates from the crimping of collagen fibrils and from elastic fibres in the ECM (Fig. 3.2). These elastic fibres have a unique arrangement of macromolecules that permits extension and contraction at a molecular level. An understanding of the molecular and structural basis of joint hypermobility requires a detailed knowledge of the structure, function and organisation of the collagenous and elastic polymer systems that comprise the ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callewaert B et al. Ehlers-Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheumatol. 2008;22(1):165-189.

    Article  PubMed  CAS  Google Scholar 

  2. Malfait F et al. The genetic basis of the joint hypermobility syndromes. Rheumatology (Oxford). 2006;45(5):502-507.

    Article  CAS  Google Scholar 

  3. Beighton P et al. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet. 1998;77(1):31-37.

    Article  PubMed  CAS  Google Scholar 

  4. Greenspan DS. Biosynthetic processing of collagen molecules. Top Curr Chem. 2005;247:149-183.

    CAS  Google Scholar 

  5. Kadler KE et al. Collagens at a glance. J Cell Sci. 2007;120(Pt 12):1955-1958.

    Article  PubMed  CAS  Google Scholar 

  6. Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20(1):33-43.

    Article  PubMed  CAS  Google Scholar 

  7. Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 2005;118(Pt 7):1341-1353.

    Article  PubMed  CAS  Google Scholar 

  8. Wagenseil JE, Mecham RP. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today. 2007;81(4):229-240.

    Article  PubMed  CAS  Google Scholar 

  9. Kielty CM. Elastic fibres in health and disease. Expert Rev Mol Med. 2006;8(19):1-23.

    Article  PubMed  Google Scholar 

  10. Craig AS et al. An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age. Connect Tissue Res. 1989;19(1):51-62.

    Article  PubMed  CAS  Google Scholar 

  11. Parry DAD, Craig AS. Growth and development of collagen fibrils in connective tissues. In: Ruggeri A, Motta PM, eds. Ultrastructure of the Connective Tissue Matrix. Boston: Martinus Nijhoff; 1984:34-64.

    Chapter  Google Scholar 

  12. Kadler KE et al. Collagen fibril formation. Biochem J. 1996;316(Pt 1):1-11.

    PubMed  CAS  Google Scholar 

  13. Huxley-Jones J, Robertson DL, Boot-Handford RP. On the origins of the extracellular matrix in vertebrates. Matrix Biol. 2007;26(1):2-11.

    Article  PubMed  CAS  Google Scholar 

  14. Wenstrup RJ et al. Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem. 2004;279(51):53331-53337.

    Article  PubMed  CAS  Google Scholar 

  15. Byers PH. Disorders of collagen biosynthesis and structure. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic Basis of Inherited Disease. New York: McGraw-Hill Publishing Co; 1989:2805-2842.

    Google Scholar 

  16. Greenspan DS et al. Human collagen gene COL5A1 maps to the q34.2—q34.3 region of chromosome 9, near the locus for nail-patella syndrome. Genomics. 1992;12(4):836-837.

    Article  PubMed  CAS  Google Scholar 

  17. Emanuel BS et al. Human alpha 1(III) and alpha 2(V) procollagen genes are located on the long arm of chromosome 2. Proc Natl Acad Sci USA. 1985;82(10):3385-3389.

    Article  PubMed  CAS  Google Scholar 

  18. Imamura Y, Scott IC, Greenspan DS. The pro-alpha3(V) collagen chain. Complete primary structure, expression domains in adult and developing tissues, and comparison to the structures and expression domains of the other types V and XI procollagen chains. J Biol Chem. 2000;275(12):8749-8759.

    Article  PubMed  CAS  Google Scholar 

  19. Myers JC, Dion AS. Types III and V procollagens: homology in genetic organisation and diversity in structure. In: Sandell LJ, Boyd CD, eds. Extracellular Matrix Genes. New York: Academic; 1990:57-78.

    Google Scholar 

  20. Lees JF, Tasab M, Bulleid NJ. Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J. 1997;16(5):908-916.

    Article  PubMed  CAS  Google Scholar 

  21. Eyre DR, Paz MA, Gallop PM. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717-748.

    Article  PubMed  CAS  Google Scholar 

  22. Kadler KE, Hojima Y, Prockop DJ. Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. J Biol Chem. 1987;262(32):15696-15701.

    PubMed  CAS  Google Scholar 

  23. Bornstein P. The NH(2)-terminal propeptides of fibrillar collagens: highly conserved domains with poorly understood functions. Matrix Biol. 2002;21(3):217-226.

    Article  PubMed  CAS  Google Scholar 

  24. Zhu Y et al. Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta1 and BMP-2. J Cell Biol. 1999;144(5):1069-1080.

    Article  PubMed  CAS  Google Scholar 

  25. Apte SS. A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily-functions and mechanisms. J Biol Chem. 2009;284(46):31493-31497.

    Article  PubMed  CAS  Google Scholar 

  26. Colige A et al. Characterization and partial amino acid sequencing of a 107-kDa procollagen I N-proteinase purified by affinity chromatography on immobilized type XIV collagen. J Biol Chem. 1995;270(28):16724-16730.

    Article  PubMed  CAS  Google Scholar 

  27. Colige A et al. cDNA cloning and expression of bovine procollagen I N-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. Proc Natl Acad Sci USA. 1997;94(6):2374-2379.

    Article  PubMed  CAS  Google Scholar 

  28. Hulmes DJ et al. Pleomorphism in type I collagen fibrils produced by persistence of the procollagen N-propeptide. J Mol Biol. 1989;210(2):337-345.

    Article  PubMed  CAS  Google Scholar 

  29. Watson RB et al. Surface located procollagen N-propeptides on dermatosparactic collagen fibrils are not cleaved by procollagen N-proteinase and do not inhibit binding of decorin to the fibril surface. J Mol Biol. 1998;278(1):195-204.

    Article  PubMed  CAS  Google Scholar 

  30. Watson RB et al. Ehlers Danlos syndrome type VIIB. Incomplete cleavage of abnormal type I procollagen by N-proteinase in vitro results in the formation of copolymers of collagen and partially cleaved pNcollagen that are near circular in cross-section. J Biol Chem. 1992;267(13):9093-9100.

    PubMed  CAS  Google Scholar 

  31. Unsold C et al. Biosynthetic processing of the pro-alpha 1(V)2pro-alpha 2(V) collagen heterotrimer by bone morphogenetic protein-1 and furin-like proprotein convertases. J Biol Chem. 2002;277(7):5596-5602.

    Article  PubMed  CAS  Google Scholar 

  32. Gopalakrishnan B, Wang W-M, Greenspan DS. Biosynthetic processing of the Pro-alpha1(V)Pro-alpha2(V)Pro-alpha3(V) procollagen heterotrimer. J Biol Chem. 2004;279(29):30904-30912.

    Article  PubMed  CAS  Google Scholar 

  33. Marini JC et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28(3):209-221.

    Article  PubMed  CAS  Google Scholar 

  34. Schwarze U et al. Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet. 2004;74(5):917-930.

    Article  PubMed  CAS  Google Scholar 

  35. Nicholls AC et al. Homozygosity for a splice site mutation of the COL1A2 gene yields a non-functional pro(alpha)2(I) chain and an EDS/OI clinical phenotype. J Med Genet. 2001;38(2):132-136.

    Article  PubMed  CAS  Google Scholar 

  36. Culbert AA et al. Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro alpha 1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite. Biochem J. 1995;311(Pt 3):815-820.

    PubMed  CAS  Google Scholar 

  37. Lichtenstein JR et al. Defect in conversion of procollagen to collagen in a form of Ehlers-Danlos syndrome. Science. 1973;182(109):298-300.

    Article  PubMed  CAS  Google Scholar 

  38. Eyre DR, Shapiro FD, Aldridge JF. A heterozygous collagen defect in a variant of the Ehlers-Danlos syndrome type VII. Evidence for a deleted amino-telopeptide domain in the pro-alpha 2(I) chain. J Biol Chem. 1985;260(20):11322-11329.

    PubMed  CAS  Google Scholar 

  39. Byers PH et al. Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet. 1997;72(1):94-105.

    Article  PubMed  CAS  Google Scholar 

  40. Cole WG et al. Deletion of 24 amino acids from the pro-alpha 1(I) chain of type I procollagen in a patient with the Ehlers-Danlos syndrome type VII. J Biol Chem. 1986;261(12):5496-5503.

    PubMed  CAS  Google Scholar 

  41. Chiodo AA, Hockey A, Cole WG. A base substitution at the splice acceptor site of intron 5 of the COL1A2 gene activates a cryptic splice site within exon 6 and generates abnormal type I procollagen in a patient with Ehlers-Danlos syndrome type VII. J Biol Chem. 1992;267(9):6361-6369.

    PubMed  CAS  Google Scholar 

  42. Steinmann B et al. Evidence for a structural mutation of procollagen type I in a patient with the Ehlers-Danlos syndrome type VII. J Biol Chem. 1980;255(18):8887-8893.

    PubMed  CAS  Google Scholar 

  43. Weil D et al. Temperature-dependent expression of a collagen splicing defect in the fibroblasts of a patient with Ehlers-Danlos syndrome type VII. J Biol Chem. 1989;264(28):16804-16809.

    PubMed  CAS  Google Scholar 

  44. Weil D et al. Structural and functional characterization of a splicing mutation in the pro-alpha 2(I) collagen gene of an Ehlers-Danlos type VII patient. J Biol Chem. 1990;265(26):16007-16011.

    PubMed  CAS  Google Scholar 

  45. Weil D et al. A base substitution in the exon of a collagen gene causes alternative splicing and generates a structurally abnormal polypeptide in a patient with Ehlers-Danlos syndrome type VII. EMBO J. 1989;8(6):1705-1710.

    PubMed  CAS  Google Scholar 

  46. Weil D et al. Identification of a mutation that causes exon skipping during collagen pre-mRNA splicing in an Ehlers-Danlos syndrome variant. J Biol Chem. 1988;263(18):8561-8564.

    PubMed  CAS  Google Scholar 

  47. Nicholls AC et al. Ehlers-Danlos syndrome type VII: a single base change that causes exon skipping in the type I collagen alpha 2(I) chain. Hum Genet. 1991;87(2):193-198.

    Article  PubMed  CAS  Google Scholar 

  48. Vasan NS et al. A mutation in the pro alpha 2(I) gene (COL1A2) for type I procollagen in Ehlers-Danlos syndrome type VII: evidence suggesting that skipping of exon 6 in RNA splicing may be a common cause of the phenotype. Am J Hum Genet. 1991;48(2):305-317.

    PubMed  CAS  Google Scholar 

  49. Wirtz MK et al. In vivo and in vitro noncovalent association of excised alpha 1 (I) amino-terminal propeptides with mutant pN alpha 2(I) collagen chains in native mutant collagen in a case of Ehlers-Danlos syndrome, type VII. J Biol Chem. 1990;265(11):6312-6317.

    PubMed  CAS  Google Scholar 

  50. Holmes DF et al. Ehlers-Danlos syndrome type VIIB. Morphology of type I collagen fibrils formed in vivo and in vitro is determined by the conformation of the retained N-propeptide. J Biol Chem. 1993;268(21):15758-15765.

    PubMed  CAS  Google Scholar 

  51. Lenaers A et al. Collagen made of extended -chains, procollagen, in genetically-defective dermatosparaxic calves. Eur J Biochem. 1971;23(3):533-543.

    Article  PubMed  CAS  Google Scholar 

  52. Danielson KG et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997;136(3):729-743.

    Article  PubMed  CAS  Google Scholar 

  53. Jepsen KJ et al. A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J Biol Chem. 2002;277(38):35532-35540.

    Article  PubMed  CAS  Google Scholar 

  54. Takeda U et al. Targeted disruption of dermatopontin causes abnormal collagen fibrillogenesis. J Invest Dermatol. 2002;119(3):678-683.

    Article  PubMed  CAS  Google Scholar 

  55. Tasheva ES et al. Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol Vis. 2002;8:407-415.

    PubMed  CAS  Google Scholar 

  56. Giunta C et al. Nevo syndrome is allelic to the kyphoscoliotic type of the Ehlers-Danlos syndrome (EDS VIA). Am J Med Genet A. 2005;133A(2):158-164.

    Article  PubMed  Google Scholar 

  57. Yeowell HN, Walker LC. Mutations in the lysyl hydroxylase 1 gene that result in enzyme deficiency and the clinical phenotype of Ehlers-Danlos syndrome type VI. Mol Genet Metab. 2000;71(1–2):212-224.

    Article  PubMed  CAS  Google Scholar 

  58. Giunta C et al. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome–an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet. 2008;82(6):1290-1305.

    Article  PubMed  CAS  Google Scholar 

  59. Malfait F, De Paepe A. Molecular genetics in classic Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet. 2005;139C(1):17-23.

    Article  PubMed  CAS  Google Scholar 

  60. Mitchell AL et al. Molecular mechanisms of classical Ehlers-Danlos syndrome (EDS). Hum Mutat. 2009;30(6):995-1002.

    Article  PubMed  CAS  Google Scholar 

  61. Symoens S et al. COL5A1 signal peptide mutations interfere with protein secretion and cause classic Ehlers-Danlos syndrome. Hum Mutat. 2009;30(2):E395-E403.

    Article  PubMed  Google Scholar 

  62. De Paepe A et al. Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am J Hum Genet. 1997;60(3):547-554.

    PubMed  Google Scholar 

  63. Wenstrup RJ et al. A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of pro alpha 1(V) chains results in the gravis form of the Ehlers-Danlos syndrome (type I). Hum Mol Genet. 1996;5(11):1733-1736.

    Article  PubMed  CAS  Google Scholar 

  64. Richards AJ et al. A single base mutation in COL5A2 causes Ehlers-Danlos syndrome type II. J Med Genet. 1998;35(10):846-848.

    Article  PubMed  CAS  Google Scholar 

  65. Giunta C et al. Homozygous Gly530Ser substitution in COL5A1 causes mild classical Ehlers-Danlos syndrome. Am J Med Genet. 2002;109(4):284-290.

    Article  PubMed  CAS  Google Scholar 

  66. Bristow J et al. Tenascin-X, collagen, elastin, and the Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet. 2005;139(1):24-30.

    Google Scholar 

  67. Burch GH et al. Embryonic expression of tenascin-X suggests a role in limb, muscle, and heart development. Dev Dyn. 1995;203(4):491-504.

    Article  PubMed  CAS  Google Scholar 

  68. Geffrotin C et al. Distinct tissue distribution in pigs of tenascin-X and tenascin-C transcripts. Eur J Biochem. 1995;231(1):83-92.

    Article  PubMed  CAS  Google Scholar 

  69. Matsumoto K et al. The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J Cell Biol. 1994;125(2):483-493.

    Article  PubMed  CAS  Google Scholar 

  70. Oberhauser AF et al. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 1998;393(6681):181-185.

    Article  PubMed  CAS  Google Scholar 

  71. Elefteriou F et al. Characterization of the bovine tenascin-X. J Biol Chem. 1997;272(36):22866-22874.

    Article  PubMed  CAS  Google Scholar 

  72. Burch GH et al. Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet. 1997;17(1):104-108.

    Article  PubMed  CAS  Google Scholar 

  73. Schalkwijk J et al. A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N Engl J Med. 2001;345(16):1167-1175.

    Article  PubMed  CAS  Google Scholar 

  74. Zweers MC et al. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. Am J Hum Genet. 2003;73(1):214-217.

    Article  PubMed  CAS  Google Scholar 

  75. Mao JR et al. Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nat Genet. 2002;30(4):421-425.

    Article  PubMed  CAS  Google Scholar 

  76. Elefteriou F et al. Binding of tenascin-X to decorin. FEBS Lett. 2001;495(1–2):44-47.

    Article  PubMed  CAS  Google Scholar 

  77. Voermans NC et al. Ehlers-Danlos syndrome due to tenascin-X deficiency: muscle weakness and contractures support overlap with collagen VI myopathies. Am J Med Genet A. 2007;143A(18):2215-2219.

    Article  PubMed  CAS  Google Scholar 

  78. Voermans NC et al. Joint hypermobility as a distinctive feature in the differential diagnosis of myopathies. J Neurol. 2009;256(1):13-27.

    Article  PubMed  CAS  Google Scholar 

  79. Minamitani T, Ariga H, Matsumoto K. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp Cell Res. 2004;297(1):49-60.

    Article  PubMed  CAS  Google Scholar 

  80. Baldock C et al. The supramolecular organization of fibrillin-rich microfibrils. J Cell Biol. 2001;152(5):1045-1056.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang H, Hu W, Ramirez F. Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol. 1995;129(4):1165-1176.

    Article  PubMed  CAS  Google Scholar 

  82. Dietz HC et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337-339.

    Article  PubMed  CAS  Google Scholar 

  83. Zweers MC et al. Joint hypermobility syndromes: the pathophysiologic role of tenascin-X gene defects. Arthritis Rheum. 2004;50(9):2742-2749.

    Article  PubMed  CAS  Google Scholar 

  84. Zweers MC et al. Deficiency of tenascin-X causes abnormalities in dermal elastic fiber morphology. J Invest Dermatol. 2004;122(4):885-891.

    Article  PubMed  CAS  Google Scholar 

  85. Reinboth B et al. Molecular interactions of biglycan and decorin with elastic fiber components: biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem. 2002;277(6):3950-3957.

    Article  PubMed  CAS  Google Scholar 

  86. Elefteriou F et al. Cell adhesion to tenascin-X mapping of cell adhesion sites and identification of integrin receptors. Eur J Biochem. 1999;263(3):840-848.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in the authors’ laboratories is funded by the Wellcome Trust and the Arthritis Research Campaign. Special thanks are given to Mrs. Yinhui Lu for electron microscopy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Beighton, P., Grahame, R., Bird, H. (2012). The Molecular Basis of Joint Hypermobility. In: Hypermobility of Joints. Springer, London. https://doi.org/10.1007/978-1-84882-085-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-085-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-084-5

  • Online ISBN: 978-1-84882-085-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics