Skip to main content

Experimental and Computational Characterization

  • Chapter
Charged Semiconductor Defects

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1493 Accesses

Abstract

This chapter briefly describes and assesses the strengths and weaknesses of various experimental and computational methods for understanding defect behavior. Defect properties, including thermodynamic ionization levels, can often be derived from direct experimental techniques such as electron paramagnetic resonance, deep level transient spectroscopy experiments, and scanning tunneling microscopy. As defects often exist at low concentrations, indirect methods such as diffusion measurements are frequently required. Also, quantum calculations by density functional theory can give valuable insight into the electronic and structural properties of charged defects, and indeed comprise a large portion of the overall literature. These methods are briefly described; however, the various methods often yield findings that differ greatly from each other and from experiments. For this reason, systems-based methods such as maximum-likelihood estimation are especially valuable for distilling the results of disparate methods into a single “best” value for a defect formation energy, ionization level, or activation energy of diffusion. This chapter describes the implementation of maximum likelihood estimation as used elsewhere in the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aavikko R, Saarinen K, Tuomisto F et al. (2007) Phys Rev B: Condens Matter 75: 085208

    ADS  Google Scholar 

  • Alatalo M, Puska MJ, Nieminen RM (1993) J Phys: Condens Matter 5: L307–L314

    ADS  Google Scholar 

  • Alfe D, Gillan MJ (2005) Phys Rev B: Condens Matter 71: 220101(R)

    ADS  Google Scholar 

  • Allen CE, Ditchfield R, Seebauer EG (1996) J Vac Sci Technol, A 14: 22–29

    ADS  Google Scholar 

  • Auret F, Deenapanray P (2004) Crit Rev Solid State Mater Sci 29: 1–44

    ADS  Google Scholar 

  • Auret FD, Nel M (1991) Meas Sci Technol 2: 623–627

    ADS  Google Scholar 

  • Awadalla SA, Hunt AW, Lynn KG et al. (2004) Phys Rev B: Condens Matter 69: 075210

    ADS  Google Scholar 

  • Bak T, Nowotny J, Rekas M et al. (2002) J Phys Chem Solids 64: 1043–1056

    ADS  Google Scholar 

  • Balk P, Ewert S, Schmitz S et al. (1991) J Appl Phys 69: 6510–6516

    ADS  Google Scholar 

  • Baraff GA, Schluter M, Allan G (1983) Phys Rev B: Condens Matter 27: 1010–16

    ADS  Google Scholar 

  • Beck JV, Arnold KJ (1977) Parameter Estimation in Engineering and Science, New York, Wiley

    MATH  Google Scholar 

  • Beling CD (2002) Appl Surf Sci 194: 224–233

    ADS  Google Scholar 

  • Beling CD, Fung S, Au HL et al. (1997) Appl Surf Sci 116: 121–128

    ADS  Google Scholar 

  • Benkhedir ML, Aida MS, Adriaenssens GJ (2004) J Non-Cryst Solids 344: 193–8

    ADS  Google Scholar 

  • Benkhedir ML, Brinza M, Qamhieh N et al. (2006) J Non-Cryst Solids 352: 1543–1546

    ADS  Google Scholar 

  • Berthe M, Stiufiuc R, Grandidier B et al. (2008) Science 319: 436–438

    ADS  Google Scholar 

  • Bliss DE, Walukiewicz W, Nolte DD et al. (1989) Absolute pressure dependence of the second ionization level of EL2 in GaAs. United States

    Google Scholar 

  • Borensztein Y (2005) Phys Status Solidi A 202: 1313–1324

    ADS  Google Scholar 

  • Borensztein Y, Witkowski N (2004) J Phys: Condens Matter 16: S4301–S4311

    ADS  Google Scholar 

  • Bracht H, Stolwijk NA, Mehrer H (1995) Phys Rev B: Condens Matter 52: 16542–60

    ADS  Google Scholar 

  • Bracht H, Haller EE, Clark-Phelps R (1998) Phys Rev Lett 81: 393–396

    ADS  Google Scholar 

  • Brower KL (1977) Rev Sci Instrum 48: 135–141

    ADS  Google Scholar 

  • Brown GW, Grube H, Hawley ME et al. (2002) J Appl Phys 92: 820–824

    ADS  Google Scholar 

  • Bunea MM, Dunham ST (1998) J Comput Aided Mater Des 5: 81–88

    Google Scholar 

  • Car R, Kelly PJ, Oshiyama A et al. (1984) Phys Rev Lett 52: 1814–17

    ADS  Google Scholar 

  • Car R, Kelly PJ, Oshiyama A et al. (1985) Atomic diffusion in silicon. 55 (Springer-Verlag, New York, 1985)

    Google Scholar 

  • Carlson CR, Suechter WF, One-Ibranim F et al. (1993) J Chem Phys 99: 7190

    ADS  Google Scholar 

  • Castleton CWM, Mirbt S (2004) Phys Rev B: Condens Matter 70: 195202

    ADS  Google Scholar 

  • Castleton CWM, Hoglund A, Mirbt S (2006) Phys Rev B: Condens Matter 73: 035215

    ADS  Google Scholar 

  • Castro A, Rubio A, Stott MJ (2003) Can J Phys 81: 1151–1164

    ADS  Google Scholar 

  • Chakrabarti M, Sarkar A, Chattapadhayay S et al. (2003) Solid State Commun 128: 321–324

    ADS  Google Scholar 

  • Chan HYH, Dev K, Seebauer EG (2003) Phys Rev B: Condens Matter 67: 035311

    ADS  Google Scholar 

  • Chen J, Lin LB, Jing FQ (2001) J Phys Chem Solids 62: 1257–62

    ADS  Google Scholar 

  • Chen SG, Branz HM, Eaton SS et al. (2004) J Phys Chem B 108: 17329–36

    Google Scholar 

  • Chin HY, Ling CC, Fung S et al. (2001) A Monte-Carlo study of defect sensitivity limits in positron lifetime spectroscopy. In: Mater. Sci. Forum (Switzerland) 363–365:692–4 (Trans Tech Publications, Munchen, Germany, 2001)

    Google Scholar 

  • Clarke S, Vvedensky DD (1988) J Appl Phys 63: 2272–83

    ADS  Google Scholar 

  • Coleman PG, Harding RE, Davies G et al. (2007) Journal of Materials Science: Materials in Electronics 18: 695–700

    Google Scholar 

  • Colombo L (2002) Annu Rev Mater Res 32: 271–295

    Google Scholar 

  • Compaan K, Haven Y (1956) J Chem Soc Faraday Trans 52: 786–801

    Google Scholar 

  • Compaan K, Haven Y (1958) J Chem Soc Faraday Trans 54: 1498–1508

    Google Scholar 

  • Corbel C, Stucky M, Hautojarvi P et al. (1988) Phys Rev B: Condens Matter 38: 8192–208

    ADS  Google Scholar 

  • Coutinho J, Torres VJB, Jones R et al. (2006) Appl Phys Lett 88: 91919–1

    Google Scholar 

  • Cox G, Graf KH, Szynka D et al. (1990) Vacuum 41: 591–595

    Google Scholar 

  • de la Broise X, Delerue C, Lannoo M et al. (2000) Phys Rev B: Condens Matter 61: 2138–45

    ADS  Google Scholar 

  • de la Rubia TD (1996) Annu Rev Mater Sci 26: 613–649

    ADS  Google Scholar 

  • De UY, Sanyal D, Chaudhuri S et al. (2000) Phys Rev B: Condens Matter 62: 14519–14523

    ADS  Google Scholar 

  • Deak P, Frauenheim T, Gali A (2007) Phys Rev B: Condens Matter 75: 153204

    ADS  Google Scholar 

  • Deng AH, Shan YY, Fung S et al. (2002) J Appl Phys 91: 3931–3933

    ADS  Google Scholar 

  • Dev K, Seebauer EG (2003a) Phys Rev B: Condens Matter 67: 035312

    ADS  Google Scholar 

  • Dev K, Seebauer EG (2003b) Surf Sci 538: 495–499

    ADS  Google Scholar 

  • Dev K, Seebauer EG (2004) Surf Sci 550: 185–191

    ADS  Google Scholar 

  • Dev K, Seebauer EG (2005) Surf Sci 583: 80–87

    ADS  Google Scholar 

  • Dev K, Jung MYL, Gunawan R et al. (2003) Phys Rev B: Condens Matter 68: 195311

    ADS  Google Scholar 

  • Diarra M, Niquet YM, Delerue C et al. (2007) Phys Rev B: Condens Matter 75: 45301–1

    ADS  Google Scholar 

  • Dmowski K (1992) J Appl Phys 71: 2259–2269

    ADS  Google Scholar 

  • Dobaczewski L, Peaker AR, Bonde Nielsen K (2004) J Appl Phys 96: 4689–4728

    ADS  Google Scholar 

  • Domke C, Heinrich M, Ebert P et al. (1998) J Vac Sci Technol, B 16: 2825–2832

    Google Scholar 

  • Doolittle WA, Rohatgi A (1994) J Appl Phys 75: 4560–4569

    ADS  Google Scholar 

  • Dornen A, Kienle R, Thonke K et al. (1989) Phys Rev B: Condens Matter 40: 12005–8

    ADS  Google Scholar 

  • Drabold DA, Estreicher SK (2007) in Theory of Defects in Semiconductors Drabold Da & Estreicher Sk (Eds.), Springer-Verlag

    Google Scholar 

  • Dubois LH, Zegarski BR, Persson BNJ (1987) Phys Rev B: Condens Matter 35: 9128–9134

    ADS  Google Scholar 

  • Dupasquier A, Mills AP (1995) Positron Spectroscopy of Solids, Amsterdam, IOS

    Google Scholar 

  • Dutta S, Chakrabarti M, Chattopadhyay S et al. (2005) J Appl Phys 98: 053513

    ADS  Google Scholar 

  • Eaglesham D (1995) Physics World 8: 41–45

    Google Scholar 

  • Ebert P (2002) Appl Phys A 75: 101–112

    ADS  Google Scholar 

  • Ebert P, Cox G, Poppe U et al. (1992) Ultramicroscopy 42–44: 871–7

    Google Scholar 

  • Ebert P, Urban K, Aballe L et al. (2000) Phys Rev Lett 84: 5816–19

    ADS  Google Scholar 

  • Ebert P, Quadbeck P, Urban K et al. (2001) Appl Phys Lett 79: 2877–2879

    ADS  Google Scholar 

  • Egger U, Schultz M, Werner P (1997) J Appl Phys 81: 6056–6061

    ADS  Google Scholar 

  • Eldrup M, Singh BN (1997) J Nucl Mater 251: 132–138

    ADS  Google Scholar 

  • Elstner M, Porezag D, Jungnickel G et al. (1998) Phys Rev B: Condens Matter 58: 7260–7268

    ADS  Google Scholar 

  • Emtsev VV, Mashovets TV, Mikhnovich VV et al. (1989) Radiat Eff Defects Solids 111–112: 99–118

    Google Scholar 

  • Esteves MC, Rocha AB, Vugman NV et al. (2008) Chem Phys Lett 453: 188–91

    ADS  Google Scholar 

  • Evans-Freeman JH, Abdulgader N (2004) Sol St Phen 95–96: 135–140

    Google Scholar 

  • Evans-Freeman JH, Abdelgader N, Kan PYY et al. (2002) Nucl Instrum Methods Phys Res, Sect B 186: 41–45

    ADS  Google Scholar 

  • Fahey P, Barbuscia G, Moslehi M et al. (1985) Appl Phys Lett 46: 784–6

    ADS  Google Scholar 

  • Fahey PM, Griffin PB, Plummer JD (1989) Rev Modern Phys 61: 289–384

    ADS  Google Scholar 

  • Farrell HH, Palmstrom CJ (1990) J Vac Sci Technol, B 8: 903–907

    Google Scholar 

  • Feher G (1956) Phys Rev 103: 834

    ADS  Google Scholar 

  • Feher G (1959) Phys Rev 114: 1219

    ADS  Google Scholar 

  • Fleming RM, Seager CH, Lang DV et al. (2007) J Appl Phys 102: 043711

    ADS  Google Scholar 

  • Foster AS, Sulimov VB, Lopez Gejo F et al. (2001) Phys Rev B: Condens Matter 64: 224108

    ADS  Google Scholar 

  • Fox H, Horsfield AP, Gillan MJ (2006) J Chem Phys 124: 134709

    ADS  Google Scholar 

  • Fujioka H, Sekiya T, Kuzuoka Y et al. (2004) Appl Phys Lett 85: 413–415

    ADS  Google Scholar 

  • Gelczuk L, Dabrowska-Szata M, Jozwiak G (2005) Mater Sc-Poland 23: 625–641

    Google Scholar 

  • Ghosh VJ, Alatalo M, Asoka-Kumar P et al. (2000) Phys Rev B: Condens Matter 61: 10092–10099

    ADS  Google Scholar 

  • Gorczyca I, Svane A, Christensen NE (1997) MRS Internet J Nitride Semicond Res 2, 18

    Google Scholar 

  • Gorczyca I, Svane A, Christensen NE (1999) Phys Rev B: Condens Matter 60: 8147–8157

    ADS  Google Scholar 

  • Gorczyca I, Skierbiszewski C, Suski T et al. (2002) Phys Rev B: Condens Matter 66: 081106

    ADS  Google Scholar 

  • Gosele U, Frank W, Seeger A (1983) Solid State Commun 45: 31–3

    ADS  Google Scholar 

  • Goto T, Yamada-Kaneta H, Sato K et al. (2007) Physica B: Physics of Condensed Matter 401–402: 109–14

    Google Scholar 

  • Gunawan R, Jung MYL, Seebauer EG et al. (2003) AlChE J 49: 2114–2123

    Google Scholar 

  • Haesslein H, Sielemann R, Zistl C (1997) Mater Sci Forum 258–263: 59–64

    Google Scholar 

  • Haesslein H, Sielemann R, Zistl C (1998) Phys Rev Lett 80: 2626–2629

    ADS  Google Scholar 

  • Hafner J, Wolverton C, Ceder G (2006) MRS Bull 31: 659–665

    Google Scholar 

  • Hanine M, Masmoudi M, Marcon J (2004) Mater Sci Eng, B 114–115: 322–329

    Google Scholar 

  • Harding JH (1990) Rep Prog Phys 53: 1403–1466

    ADS  Google Scholar 

  • He W, Ma TP (2003) Appl Phys Lett 83: 2605–2607

    ADS  Google Scholar 

  • Heine V (1975) Surf Sci 53: 408

    ADS  Google Scholar 

  • Horsfield AP, Bratkovsky AM (2000) J Phys: Condens Matter 12: R1–R24

    ADS  Google Scholar 

  • Huang CF, Tsui BY, Tzeng PJ et al. (2006) Appl Phys Lett 88: 262909

    ADS  Google Scholar 

  • Ilyin IV, Muzafarova MV, Mokhov EN et al. (2007) Semicond Sci Technol 22: 270–278

    ADS  Google Scholar 

  • Ishii M, Yoshino Y, Takarabe K et al. (1999) Appl Phys Lett 74: 2672–2674

    ADS  Google Scholar 

  • Ishii M, Yoshino Y, Takarabe KI et al. (2000) J Appl Phys 88: 3962–3967

    ADS  Google Scholar 

  • Istratov AA (1997) Rev Sci Instrum 68: 3861–3865

    ADS  Google Scholar 

  • Jarzebski ZM (1973) Oxide Semiconductors, New York, Pergamon Press

    Google Scholar 

  • Jenkins DW, Dow JD (1989) Phys Rev B: Condens Matter 39: 3317–3329

    ADS  Google Scholar 

  • Jenkins DW, Dow JD, Tsai MH (1992) J Appl Phys 72: 4130–4133

    ADS  Google Scholar 

  • Jones RO, Gunnarsson O (1989) Rev Modern Phys 61: 689–746

    ADS  Google Scholar 

  • Jones TS (1992) Vacuum 43: 177–183

    Google Scholar 

  • Joyce BA, Neave JH, Dobson PJ et al. (1985) J Vac Sci Technol, B 3: 562

    Google Scholar 

  • Jung MYL, Gunawan R, Braatz RD et al. (2003) J Electrochem Soc 150: G838–G842

    Google Scholar 

  • Jung MYL, Gunawan R, Braatz RD et al. (2004) AlChE J 50: 3248–3256

    Google Scholar 

  • Jung MYL, Kwok CTM, Braatz RD et al. (2005) J Appl Phys 97: 063520

    ADS  Google Scholar 

  • Kaminski P (1993) Mater Sci Eng, B 20: 221–224

    Google Scholar 

  • Kantorovich LN, Tupitsyn II (1999) J Phys: Condens Matter 11: 6159–6168

    ADS  Google Scholar 

  • Kauppinen H (1997) Identification of point defect structures in semiconductors by positron annihilation: application to silicon and compound semiconductors Ph.D. diss. Helsinki Univ. Technol., Espoo, Finland

    Google Scholar 

  • Kennedy TA, Wilsey ND (1985) 929 (Metallurgical Soc., AIME, Warrendale, PA, 1985)

    Google Scholar 

  • Khan A, Yamaguchi M (2007) DLTS: A promising technique for understanding the physics and engineering of the point defects in Si and III–V alloys. In: Mater. Res. Soc. Symp. Proc. 994:0994-F07-05 (Materials Research Society, Warrendale, PA, 2007)

    Google Scholar 

  • Kim H, Chelikowsky JR (1996) Phys Rev Lett 77: 1063–1066

    ADS  Google Scholar 

  • Kofstad P (1972) Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York, John Wiley & Sons, Inc

    Google Scholar 

  • Kohn W, Sham LJ (1965) Phys Rev 140: A1133

    ADS  MathSciNet  Google Scholar 

  • Krause-Rehberg R, Leipner HS (1999) Positron Annihilation in Semiconductors: Defect Studies, Springer-Verlag

    Google Scholar 

  • Krause-Rehberg R, Borner F, Redmann F (2000) Appl Phys Lett 77: 3932–4

    ADS  Google Scholar 

  • Krause-Rehberg R, Leipner HS, Abgarjan T et al. (1998) Applied Physics A (Materials Science Processing) 66: 599–614

    ADS  Google Scholar 

  • Kubby JA, Boland JJ (1996) Surf Sci Rep 26: 61–204

    ADS  Google Scholar 

  • Kuçur E, Bücking W, Giernoth R et al. (2005) J Phys Chem B 109: 10355–20360

    Google Scholar 

  • Kwok CTM, Dev K, Braatz RD et al. (2005) J Appl Phys 98: 013524

    ADS  Google Scholar 

  • Lagel B, Baikie ID, Petermann U (1999) Surf Sci 435: 622–626

    Google Scholar 

  • Lang DV (1974) J Appl Phys 45: 3023–3032

    ADS  Google Scholar 

  • Lautenschlager P, Garriga M, Vina L et al. (1987) Phys Rev B: Condens Matter 36: 4821–30

    ADS  Google Scholar 

  • Law ME, Gilmer GH, Jaraiz M (2000) MRS Bull 25: 45–50

    Google Scholar 

  • Lee EU, Kim YS, Jin YG et al. (2001) Phys Rev B: Condens Matter 64: 085120

    ADS  Google Scholar 

  • Lee G, Mai H, Chizhov I et al. (2000) Surf Sci 463: 55–65

    ADS  Google Scholar 

  • Lengel G, Harper J, Weimer M (1996) Phys Rev Lett 76: 4725–4728

    ADS  Google Scholar 

  • Lengel G, Wilkins R, Brown G et al. (1994) Phys Rev Lett 72: 836

    ADS  Google Scholar 

  • Lento J, Mozos JL, Nieminen RM (2002) J Phys: Condens Matter 14: 2637–2645

    ADS  Google Scholar 

  • Lugakov PF, Lukashevich TA (1989) Soviet Physics – Semiconductors 23: 365

    Google Scholar 

  • Lye WK, Hasegawa E, Ma TP et al. (1997) Appl Phys Lett 71: 2523–2525

    ADS  Google Scholar 

  • Mahanti SD, Hoang K, Ahmad S (2007) Physica B 401–402: 291–295

    Google Scholar 

  • Makarenko LF, Evans-Freeman JH (2007) Physica B 401–402: 666–669

    Google Scholar 

  • Makinen J, Hautojarvi P, Corbel C (1992) J Phys: Condens Matter 4: 5137–5154

    ADS  Google Scholar 

  • Makov G, Payne MC (1995) Phys Rev B: Condens Matter 51: 4014–22

    ADS  Google Scholar 

  • Margaritondo G, Franciosi A (1984) Annu Rev Mater Sci 14: 67–93

    ADS  Google Scholar 

  • Martin-Bragado I, Castrillo P, Jaraiz M et al. (2005a) Phys Rev B: Condens Matter 72: 035202

    ADS  Google Scholar 

  • Martin-Bragado I, Castrillo P, Jaraiz M et al. (2005b) J Appl Phys 98: 053709

    ADS  Google Scholar 

  • Martin-Bragado I, Tian S, Johnson M et al. (2006) Nucl Instrum Methods Phys Res B 253: 63–67

    ADS  Google Scholar 

  • McGuire DL, Pulfrey DL (2006) Nanotechnology 17: 5805–5811

    ADS  Google Scholar 

  • Menetrey M, Markovits A, Minot C et al. (2004) J Phys Chem B 108: 12858–12864

    Google Scholar 

  • Mori-Sánchez P, Cohen AJ, Yang W (2008) Phys Rev Lett 100: 146401

    ADS  Google Scholar 

  • Needs RJ (2007) in Theory of Defects in Semiconductors Drabold Da & Estreicher Sk (Eds.), Springer-Verlag

    Google Scholar 

  • Nolte DD (1998) Phys Rev B: Condens Matter 58: 7994–8001

    ADS  MathSciNet  Google Scholar 

  • Nowotny J, Bak T, Nowotny MK et al. (2007) Int J Hydrogen Energy 32: 2630–2643

    Google Scholar 

  • Nozaki H, Itoh S (2000) Phys Rev E 62: 1390–1396

    ADS  Google Scholar 

  • Palumbo O, Cordero F, Cantelli R et al. (2002) Mater Sci Eng, B 91: 498–502

    Google Scholar 

  • Payne MC, Teter MP, Allan DC (1990) J Chem Soc, Faraday Trans 86: 1221–6

    Google Scholar 

  • Payne MC, Teter MP, Allan DC et al. (1992) Rev Modern Phys 64: 1045–97

    ADS  Google Scholar 

  • Pensl G, Frank T, Krieger M et al. (2003) Physica B 340–342: 121–127

    Google Scholar 

  • Perdew JP, Zunger A (1981) Phys Rev B: Condens Matter 23: 5048–79

    ADS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77: 3865–3868

    ADS  Google Scholar 

  • Perdew JP, Chevary JA, Vosko SH et al. (1992) Phys Rev B: Condens Matter 46: 6671–6687

    ADS  Google Scholar 

  • Pereira RN, Gehlhoff W, Neves AJ et al. (2003) Journal of Physics Condensed Matter 15: 2493–2505

    ADS  Google Scholar 

  • Petit C, Salace G, Vuillaume D (2003) Solid-State Electron 47: 1663–1668

    ADS  Google Scholar 

  • Pichler P (2004) Intrinsic Point Defects, Impurities, and their Diffusion in Silicon, New York, Springer-Verlag/Wein

    Google Scholar 

  • Piquini P, Baierle RJ, Schmidt TM et al. (2005) Nanotechnology 16: 827–831

    ADS  Google Scholar 

  • Price R, Platzman PM (1991) Phys Rev B: Condens Matter 44: 2356

    ADS  Google Scholar 

  • Puska MJ, Nieminen RM (1994) Rev Modern Phys 66: 841–97

    ADS  Google Scholar 

  • Puska MJ, Poykko S, Pesola M et al. (1998) Phys Rev B: Condens Matter 58: 1318–25

    ADS  Google Scholar 

  • Qian MC, Gothelid M, Johansson B et al. (2002) Phys Rev B: Condens Matter 66: 155326

    ADS  Google Scholar 

  • Qin Z, Dunham ST (2003) Phys Rev B: Condens Matter 68: 245201

    ADS  Google Scholar 

  • Rasmussen MD, Molina LM, Hammer B (2004) J Chem Phys 120: 988–997

    ADS  Google Scholar 

  • Rekas M (1986) Solid State Ionics, Diffusion & Reactions 20: 55–9

    Google Scholar 

  • Rosenwaks Y, Shikler R, Glatzel T et al. (2004) Phys Rev B: Condens Matter 70: 085320

    ADS  Google Scholar 

  • S. B. Orlinskii HBEJJGJSPGBCdMDAM (2005) Magn Reson Chem 43: S140–S144

    Google Scholar 

  • Saarinen K (1991) Acta Polytech Sc Ap: 1–36

    Google Scholar 

  • Saarinen K, Hautojarvi P, Lanki P et al. (1991) Phys Rev B: Condens Matter 44: 10585–10600

    ADS  Google Scholar 

  • Salace G, Petit C, Vuillaume D (2002) J Appl Phys 91: 5896–5901

    ADS  Google Scholar 

  • Sasaki K, Maier J (1999) J Appl Phys 86: 5434–5443

    ADS  Google Scholar 

  • Scheffler M (1982) Electronic structure of simple deep-level defects in semiconductors. In: 46th Annual Meeting of the German Physical Society, 46th Annual Meeting of the German Physical Society. Muenster, W Ger, Vieweg

    Google Scholar 

  • Schick JT, Morgan CG, Papoulias P (2002) Phys Rev B: Condens Matter 66: 195302

    ADS  Google Scholar 

  • Schultz KA, Suni II, Seebauer EG (1993) J Opt Soc Am B: Opt Phys 10: 546–50

    Article  ADS  Google Scholar 

  • Schultz KA, Suni II, Allen CE et al. (1992) Surf Sci 276: 40–49

    ADS  Google Scholar 

  • Schultz M, Egger U, Scholz R et al. (1998) J Appl Phys 83: 5295–5301

    ADS  Google Scholar 

  • Schultz PA (1999) Phys Rev B: Condens Matter 60: 1551–1554

    ADS  Google Scholar 

  • Schultz PA (2000) Phys Rev Lett 84: 1942–1945

    ADS  Google Scholar 

  • Schultz PA (2006) Phys Rev Lett 96: 246401

    ADS  Google Scholar 

  • Schwarz G, Neugebauer J, Scheffler M (2000) Point defects on III–V semiconductor surfaces. cond-mat/0010342:1–3 (Springer, Berlin, Osaka, Japan, 2000)

    Google Scholar 

  • Seebauer EG, Jung MYL (2001) Surface Diffusion of Adsorbates on metals, Alloys, Oxides and Semiconductors, New York, Springer Verlag

    Google Scholar 

  • Seebauer EG, Dev K, Jung MYL et al. (2006) Phys Rev Lett 97: 055503

    ADS  Google Scholar 

  • Seeger A, Chik KP (1968) Phys Stat Solidi B 29: 455–542

    ADS  Google Scholar 

  • Seeger A, Banhart F (1990) Helvetica Physica Acta 63: 403–428

    Google Scholar 

  • Segev D, Janotti A, Van de Walle CG (2007) Phys Rev B: Condens Matter 75: 035201

    ADS  Google Scholar 

  • Semmler U, Ebert P, Urban K (2000) Appl Phys Lett 77: 61–63

    ADS  Google Scholar 

  • Shan YY, Ling CC, Deng AH et al. (1997) Phys Rev B: Condens Matter 55: 7624–8

    ADS  Google Scholar 

  • Shim J, Lee EK, Lee YJ et al. (2005) Phys Rev B: Condens Matter 71: 245204

    ADS  Google Scholar 

  • Siegel RW (1980) Ann Rev Mater Sci 10: 393–425

    ADS  Google Scholar 

  • Son NT, Magnusson B, Janzen E (2002) Appl Phys Lett 81: 3945–7

    ADS  Google Scholar 

  • Srivastava PC, Singh UP (1996) Hydrogen in semiconductors. In: Bull. Mater. Sci. (India) 19:51–60 (Indian Acad. Sci, New Delhi, India, 1996)

    Google Scholar 

  • Stadele M, Moukara M, Majewski JA et al. (1999) Phys Rev B: Condens Matter 59: 10031–10043

    ADS  Google Scholar 

  • Stievenard D (2000) Mater Sci Eng, B 71: 120–127

    Google Scholar 

  • Stievenard D, Vuillaume D (1986) J Appl Phys 60: 973–979

    ADS  Google Scholar 

  • Strehlow R, Kuhn W, Hanke M (1986) Phys Stat Sol (b) 134: 257–265

    ADS  Google Scholar 

  • Su Z, Farmer JW (1990) J Appl Phys 68: 4068–70

    ADS  Google Scholar 

  • Svensson BG, Jagadish C, Hallen A et al. (1995) Nucl Instrum Methods Phys Res, Sect B 106: 183–90

    ADS  Google Scholar 

  • Szpala S, AsokaKumar P, Nielsen B et al. (1996) Phys Rev B: Condens Matter 54: 4722–4731

    ADS  Google Scholar 

  • Trueblood DL (1967) Phys Rev 161: 828–833

    ADS  Google Scholar 

  • Ural A, Griffin PB, Plummer JD (1999) Phys Rev Lett 83: 3454–3457

    ADS  Google Scholar 

  • Van de Walle CG, Neugebauer J (2004) J Appl Phys 95: 3851–79

    ADS  Google Scholar 

  • Van Hove MA, Weinberg WH, Chan CM (1986) Low-Energy Electron Diffraction, Experiment, Theory and Surface Structure Determination, Berlin, Springer

    Google Scholar 

  • Vogel D, Kruger P, Pollmann J (1997) Phys Rev B: Condens Matter 55: 12836–12839

    ADS  Google Scholar 

  • von Bardeleben HJ, Cantin JL, Henry L et al. (2000) Phys Rev B: Condens Matter 62: 10841–10846

    Google Scholar 

  • von Lilienfeld OA, Schultz PA (2008) Phys Rev B: Condens Matter 77: 115202

    ADS  Google Scholar 

  • Wachutka G, Fleszar A, Maca F et al. (1992) J Phys: Condens Matter 4: 2831–44

    ADS  Google Scholar 

  • Wang JN, Yang CL, Wang SH et al. (2002) Int J Mod Phys B 16: 4363–72

    ADS  Google Scholar 

  • Wang SG, Wen XD, Cao DB et al. (2005) Surf Sci 577: 69–76

    ADS  Google Scholar 

  • Wang Z, Seebauer EG (2005) Phys Rev Lett 95: 015501

    ADS  Google Scholar 

  • Wang Z, Dai YQ, Shao YD et al. (2007) Mater Lett 61: 1187–9

    Google Scholar 

  • Weiers T (2006) Phys Rev B: Condens Matter 73: 33201–1

    ADS  Google Scholar 

  • Windl W, Lenosky TJ, Kress JD et al. (1998) Nucl Instrum Methods Phys Res, Sect B 141: 61–65

    ADS  Google Scholar 

  • Wright AF, Modine NA (2006) Phys Rev B: Condens Matter 74: 235209

    ADS  Google Scholar 

  • Zhang SB, Zunger A (1996) Phys Rev Lett 77: 119–122

    ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Experimental and Computational Characterization. In: Charged Semiconductor Defects. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-059-3_3

Download citation

Publish with us

Policies and ethics