Principles of Bacterial Urinary Tract Infections and Antimicrobials

  • Florian M. E. Wagenlehner
  • Wolfgang Weidner
  • Kurt G. Naber
Part of the Springer Specialist Surgery Series book series (SPECIALIST)


Bacterial urinary tract infections (UTI) are frequently found in the outpatient as well as in the nosocomial setting. The bacterial UTI can be stratified into uncomplicated and complicated UTI and urosepsis.

Antimicrobial therapy is mostly guided by laboratory susceptibility testing. The scientific basis of antibiotic treatment relies on pharmacodynamic and pharmacokinetic parameters. The results of these correlations are summarized in the definition of susceptibility breakpoints. Antibiotic resistance is continuously increasing in uncomplicated as well as complicated UTI. A new aspect is therefore currently included in the concepts of antimicrobial treatment of bacterial UTI, which refers to the capacity of inducing emergence of antibiotic resistance of different antibiotic substances in different entities of UTI. In uncomplicated UTI, efforts are made to use antibiotic substances exclusively for this indication. In complicated UTI, antibiotics with optimal activity in the urinary tract and high dosage are recommended. The use of antibiotics has to keep up with the continuous change in antimicrobial resistance and the tailored needs in the individual patient. Antibiotic substances therefore need to become evaluated for each indication and continuously followed for clinical usage. The knowledge of structure-activity relationships of antimicrobial substances and bacterial resistance mechanisms to antibiotics help to use antibiotics better in daily routine and design new derivatives and substances.


Urinary Tract Infection Antimicrobial Substance Complicated Urinary Tract Infection Uncomplicated Urinary Tract Infection Antibiotic Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med. 2002;113(Suppl 1A):S5-S15CrossRefGoogle Scholar
  2. 2.
    Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, Stamm WE. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis. 1999;29(4):745-758PubMedCrossRefGoogle Scholar
  3. 3.
    Gales AC, Jones RN, Gordon KA, et al. Activity and spectrum of 22 antimicrobial agents tested against urinary tract infection pathogens in hospitalized patients in Latin America: report from the second year of the SENTRY antimicrobial surveillance program (1998). J Antimicrob Chemother. 2000;45(3):295-303PubMedCrossRefGoogle Scholar
  4. 4.
    Ruden H, Gastmeier P, Daschner FD, Schumacher M. Nosocomial and community-acquired infections in germany. Summary of the results of the first national prevalence study (NIDEP). Infection. 1997;25(4):199-202PubMedCrossRefGoogle Scholar
  5. 5.
    Maki DG, Tambyah PA. Engineering out the risk for infection with urinary catheters. Emerg Infect Dis. March/April 2001;7(2):342-347PubMedCrossRefGoogle Scholar
  6. 6.
    Goto T, Nakame Y, Nishida M, Ohi Y. Bacterial biofilms and catheters in experimental urinary tract infection. Int J Antimicrob Agents. 1999;11(3–4):227-231. discussion 37–39PubMedCrossRefGoogle Scholar
  7. 7.
    Kahlmeter, G. The European Committee on antimicrobial susceptibility testing – EUCAST. 2008 18.11.2008. Available from: [cited 2008 08.12.2008]
  8. 8.
    Drusano GL. Pharmacokinetics and pharmacodynamics of antimicrobials. Clin Infect Dis. 2007;45(suppl 1):S89-S95PubMedCrossRefGoogle Scholar
  9. 9.
    Gupta K, Hooton TM, Stamm WE. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med. 2001;135(1):41-50PubMedGoogle Scholar
  10. 10.
    Hooton TM. The current management strategies for community-acquired urinary tract infection. Infect Dis Clin North Am. 2003;17(2):303-332PubMedCrossRefGoogle Scholar
  11. 11.
    Kahlmeter G. An international survey of the antimicrobial susceptibility of pathogens from uncomplicated urinary tract infections: the ECO.SENS Project. J Antimicrob Chemother. 2003;51(1):69-76PubMedCrossRefGoogle Scholar
  12. 12.
    Naber KG, Schito G, Botto H, Palou J, Mazzei T. Surveillance study in Europe and Brazil on clinical aspects and antimicrobial resistance epidemiology in females with cystitis (ARESC): implications for empiric therapy. Eur Urol. 2008;54(5):1164-1175PubMedCrossRefGoogle Scholar
  13. 13.
    Jones RN, Kugler KC, Pfaller MA, Winokur PL. Characteristics of pathogens causing urinary tract infections in hospitals in North America: results from the SENTRY Antimicrobial Surveillance Program, 1997. Diagn Microbiol Infect Dis. 1999;35(1):55-63PubMedCrossRefGoogle Scholar
  14. 14.
    Gordon KA, Jones RN. Susceptibility patterns of orally administered antimicrobials among urinary tract infection pathogens from hospitalized patients in North America: comparison report to Europe and Latin America. Results from the SENTRY Antimicrobial Surveillance Program (2000). Diagn Microbiol Infect Dis. 2003;45(4):295-301PubMedCrossRefGoogle Scholar
  15. 15.
    Mathai D, Jones RN, Pfaller MA. Epidemiology and frequency of resistance among pathogens causing urinary tract infections in 1, 510 hospitalized patients: a report from the SENTRY Antimicrobial Surveillance Program (North America). Diagn Microbiol Infect Dis. 2001;40(3):129-136PubMedCrossRefGoogle Scholar
  16. 16.
    Bouza E, San Juan R, Munoz P, Voss A, Kluytmans JA. European perspective on nosocomial urinary tract infections I. Report on the microbiology workload, etiology and antimicrobial susceptibility (ESGNI-003 study). European Study Group on Nosocomial Infections. Clin Microbiol Infect. 2001;10:523-531CrossRefGoogle Scholar
  17. 17.
    Wagenlehner FM, Niemetz A, Dalhoff A, Naber KG. Spectrum and antibiotic resistance of uropathogens from hospitalized patients with urinary tract infections: 1994–2000. Int J Antimicrob Agents. 2002;19(6):557-564PubMedCrossRefGoogle Scholar
  18. 18.
    Bjerklund Johansen TE, Cek M, Naber K, Stratchounski L, Svendsen MV, Tenke P. Prevalence of hospital-acquired urinary tract infections in urology departments. Eur Urol. 2007;51(4):1100-1111. discussion 12PubMedCrossRefGoogle Scholar
  19. 19.
    Livermore DM, Woodford N. The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 2006;14(9):413-420PubMedCrossRefGoogle Scholar
  20. 20.
    Ena J, Arjona F, Martinez-Peinado C, Lopez-Perezagua Mdel M, Amador C. Epidemiology of urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Urology. 2006;68(6):1169-1174PubMedCrossRefGoogle Scholar
  21. 21.
    Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis. 2004;38(suppl 4):S341-S355PubMedCrossRefGoogle Scholar
  22. 22.
    McLuskey K, Cameron S, Hammerschmidt F, Hunter WN. Structure and reactivity of hydroxypropylphosphonic acid epoxidase in fosfomycin biosynthesis by a cation- and flavin-dependent mechanism. Proc Natl Acad Sci USA. 2005;102(40):14221-14226PubMedCrossRefGoogle Scholar
  23. 23.
    Patel SS, Balfour JA, Bryson HM. Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs. 1997;53(4):637-656PubMedCrossRefGoogle Scholar
  24. 24.
    Hof H. Antimicrobial therapy with nitroheterocyclic compounds, for example, metronidazole and nitro-furantoin. Immun Infekt. 1988;16(6):220-225PubMedGoogle Scholar
  25. 25.
    Conklin JD. The pharmacokinetics of nitrofurantoin and its related bioavailability. Antibiot Chemother. 1978;25:233-252PubMedGoogle Scholar
  26. 26.
    Mazzulli T, Skulnick M, Small G, et al. Susceptibility of community Gram-negative urinary tract isolates to mecillinam and other oral agents. Can J Infect Dis. 2001;12(5):289-292PubMedGoogle Scholar
  27. 27.
    Williams GJ, Wei L, Lee A, Craig JC. Long-term antibiotics for preventing recurrent urinary tract infection in children. Cochrane Database Syst Rev. 2006;3: D001534PubMedGoogle Scholar
  28. 28.
    Koulaouzidis A, Bhat S, Moschos J, Tan C, De Ramon A. Nitrofurantoin-induced lung- and hepatotoxicity. Ann Hepatol. 2007;6(2):119-121PubMedGoogle Scholar
  29. 29.
    Sjovall J, Huitfeldt B, Magni L, Nord CE. Effect of beta-lactam prodrugs on human intestinal microflora. Scand J Infect Dis Suppl. 1986;49:73-84PubMedGoogle Scholar
  30. 30.
    Spratt BG. The mechanism of action of mecillinam. J Antimicrob Chemother. 1977;3(suppl B):13-19PubMedGoogle Scholar
  31. 31.
    Donowitz GR, Mandell GL. Beta-Lactam antibiotics (1). N Engl J Med. 1988;318(7):419-426PubMedCrossRefGoogle Scholar
  32. 32.
    Nathwani D, Wood MJ. Penicillins. A current review of their clinical pharmacology and therapeutic use. Drugs. 1993;45(6):866-894PubMedCrossRefGoogle Scholar
  33. 33.
    Drusano GL, Schimpff SC, Hewitt WL. The acylampicillins: mezlocillin, piperacillin, and azlocillin. Rev Infect Dis. 1984;6(1):13-32PubMedCrossRefGoogle Scholar
  34. 34.
    Marshall WF, Blair JE. The cephalosporins. Mayo Clin Proc. 1999;74(2):187-195PubMedCrossRefGoogle Scholar
  35. 35.
    Jones RN, Preston DA. The antimicrobial activity of cephalexin against old and new pathogens. Postgrad Med J. 1983;59(suppl 5):9-15PubMedGoogle Scholar
  36. 36.
    Smith BR, LeFrock JL. Cefuroxime: antimicrobial activity, pharmacology, and clinical efficacy. Ther Drug Monit. 1983;5(2):149-160PubMedCrossRefGoogle Scholar
  37. 37.
    Brogard JM, Jehl F, Willemin B, Lamalle AM, Blickle JF, Monteil H. Clinical pharmacokinetics of cefotiam. Clin Pharmacokinet. 1989;17(3):163-174PubMedCrossRefGoogle Scholar
  38. 38.
    Perry CM, Brogden RN. Cefuroxime axetil. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1996;52(1):125-158PubMedCrossRefGoogle Scholar
  39. 39.
    Molavi A. Cephalosporins: rational for clinical use – review article. Am Fam Phys. 1991;43(3):937-948Google Scholar
  40. 40.
    Dudley MN, Barriere SL. Cefotaxime: microbiology, pharmacology, and clinical use. Clin Pharm. 1982;1(2):114-124PubMedGoogle Scholar
  41. 41.
    Brogden RN, Ward A. Ceftriaxone. A reappraisal of its antibacterial activity and pharmacokinetic properties, and an update on its therapeutic use with particular reference to once-daily administration. Drugs. 1988;35 (6):604-645PubMedCrossRefGoogle Scholar
  42. 42.
    Chocas EC, Paap CM, Godley PJ. Cefpodoxime proxetil: a new, broad-spectrum, oral cephalosporin. Ann Pharmacother. 1993;27(11):1369-1377PubMedGoogle Scholar
  43. 43.
    Owens RC Jr, Nightingale CH, Nicolau DP. Ceftibuten: an overview. Pharmacotherapy. 1997;17(4):707-720PubMedGoogle Scholar
  44. 44.
    Bergogne-Berezin E. Structure-activity relationship of ceftazidime. Consequences on the bacterial spectrum. Presse Méd. 1988;17:1878-1882PubMedGoogle Scholar
  45. 45.
    Wynd MA, Paladino JA. Cefepime: a fourth-generation parenteral cephalosporin. Ann Pharmacother. 1996;30(12):1414-1424PubMedGoogle Scholar
  46. 46.
    Hammond ML. Ertapenem: a Group 1 carbapenem with distinct antibacterial and pharmacological properties. J Antimicrob Chemother. 2004;53: ii7-ii9. Suppl 2PubMedCrossRefGoogle Scholar
  47. 47.
    Shah PM, Isaacs RD. Ertapenem, the first of a new group of carbapenems. J Antimicrob Chemother. 2003;52(4):538-542PubMedCrossRefGoogle Scholar
  48. 48.
    Hellinger WC, Brewer NS. Carbapenems and monobactams: imipenem, meropenem, and aztreonam. Mayo Clin Proc. 1999;74(4):420-434PubMedCrossRefGoogle Scholar
  49. 49.
    Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM Aminoglycosides: activity and resistance. Antimicrob Agents Chemother. 1999;43(4):727-737PubMedGoogle Scholar
  50. 50.
    Benveniste R, Davies J. Structure-activity relationships among the aminoglycoside antibiotics: role of hydroxyl and amino groups. Antimicrob Agents Chemother. 1973;4(4):402-409PubMedGoogle Scholar
  51. 51.
    Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43(5):1003-1012PubMedGoogle Scholar
  52. 52.
    Naber KG, Adam D. Classification of fluoroquinolones. Int J Antimicrob Agents. 1998;10(4):255-257PubMedCrossRefGoogle Scholar
  53. 53.
    Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM. Quinolones in 2005: an update. Clin Microbiol Infect. 2005;11(4):256-280PubMedCrossRefGoogle Scholar
  54. 54.
    Okhamafe AO, Akerele JO, Chukuka CS. Pharmacokinetic interactions of norfloxacin with some metallic medicinal agents. Int J Pharm. 1991;68(1–3):11-18CrossRefGoogle Scholar
  55. 55.
    Naber KG. Which fluoroquinolones are suitable for the treatment of urinary tract infections? Int J Antimicrob Agents. 2001;17(4):331-341PubMedCrossRefGoogle Scholar
  56. 56.
    Smilack JD. Trimethoprim-sulfamethoxazole. Mayo Clin Proc. 1999;74(7):730-734PubMedCrossRefGoogle Scholar
  57. 57.
    Hermans PE, Wilhelm MP. Vancomycin. Mayo Clin Proc. 1987;62(10):901-905PubMedGoogle Scholar
  58. 58.
    Shinabarger D. Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin Investig Drugs. 1999;8(8):1195-1202PubMedCrossRefGoogle Scholar
  59. 59.
    Conte JE Jr, Golden JA, Kipps J, Zurlinden E. Intrapulmonary pharmacokinetics of linezolid. Antimicrob Agents Chemother. 2002;46(5):1475-1480PubMedCrossRefGoogle Scholar
  60. 60.
    MacGowan AP. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother. 2003;51:(suppl 2):ii17-ii25PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Florian M. E. Wagenlehner
    • 1
  • Wolfgang Weidner
    • 2
  • Kurt G. Naber
    • 3
  1. 1.Department of Urology, Pediatric Urology and AndrologyJustus-Liebig-UniversityGiessenGermany
  2. 2.Department of Urology, Pediatric Urology and AndrologyUniversity Hospital Giessen and Marburg GmbHGiessenGermany
  3. 3.Technical University of MunichMunichGermany

Personalised recommendations