Advertisement

Physiology and Pharmacology of the Prostate

  • William D. Steers
Chapter
Part of the Springer Specialist Surgery Series book series (SPECIALIST)

Abstract

The physiological properties of the prostate resemble those of other exocrine glands. The precise functions of the prostate remain obscure but some inferences can be made. The prostate is ideally positioned to block the entrance of pathogens into the reproductive tract by secreting potent biological agents that are bacteriostatic. These substances include metal ions, proteases, and highly charged organic molecules such as spermine. The total contribution to seminal fluid (average 3 mL) made by prostate secretions is about 0.5 mL. The pH of these prostate secretions is relatively alkaline and varies from 6 to 8, possibly to counteract the acidic environment of the urethra and vagina. Seminal plasma may increase sperm motility or survival in the male urethra or female genital tract by buffering mechanisms. Constituents of prostatic fluid participate in the clotting (semenogelins I and II) and lysing (prostate specific antigen) of semen. This clotting, then liquefaction may somehow optimize fertility by allowing an initial higher dwell time in the female reproductive tract. A list of components of prostatic fluid is found in Table 18.1.

Keywords

Benign Prostatic Hyperplasia Lower Urinary Tract Symptom PDE5 Inhibitor Benign Prostatic Hyperplasia Patient Prostatic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Meares EM. Prostatitis. Med Clin North Am. 1991;75:405-424PubMedGoogle Scholar
  2. 2.
    Veltri R, Rodriguez R, et al. Molecular biology, endocrinology, and physiology of the prostate and seminal vesicles. In: Wein AJ, ed. Campell-Walsh Urology. 9th ed. Philadelphia: Saunders; 2007:chap 85Google Scholar
  3. 3.
    Partanen M, Hervonen A. The effect of long-term castration on the histochemically demonstrable catecholamines in the hypogastric ganglion of the rat. J Autonom Nerv Syst. 1979;1:139-147CrossRefGoogle Scholar
  4. 4.
    Shapiro E, Miller A, Lepor H. Down regulation of the muscarinic cholinergic receptor of the rat prostate following castration. J Urol. 1985;134(1):179-182PubMedGoogle Scholar
  5. 5.
    Melvin J, Hamill R. The major pelvic ganglion: androgen control of postnatal development. J Neurosci. 1987;7(6):1607-1612PubMedGoogle Scholar
  6. 6.
    Hamill R, Schroeder B. Hormonal regulation of adult sympathetic neurons: the effects of castration on neuropeptide Y, norepinephrine, and tyrosine hydroxylase activity. J Neurobiol. 1990;21(5):731-742PubMedCrossRefGoogle Scholar
  7. 7.
    Regunathan S, Nassir Y, Sundaram K, et al. Expression of I2-Imidazoline sites in rat prostate. Effect castration aging. Biochem Pharmacol. 1996;51:455-459PubMedCrossRefGoogle Scholar
  8. 8.
    Farnsworth W, Lawrence M. Regulation of prostate secretion in the rat. Am J Physiol. 1965;119:373-376Google Scholar
  9. 9.
    Bodansky M, Sharaf H, Roy J, et al. Contractile activity of vasotocin, oxytocin, and vasopressin on mammalian prostate. Eur J Pharmacol. 1992;216:311-313CrossRefGoogle Scholar
  10. 10.
    Sharaf H, Foda HD, Said SI, et al. Oxytocin and related peptides elicit contractions of prostate and seminal vesicle. Ann NY Acad Sci. 1992;652:474-477PubMedCrossRefGoogle Scholar
  11. 11.
    Litvak J, Borkowski A, Jacobs S, et al. Induction of apoptosis by doxazosin: targeting alpha-1 blockade in benign prostatic hyperplasia. J Urol. 1997;157:1086AGoogle Scholar
  12. 12.
    Hellstrom W, Schmidt R, Lue T, et al. Neuromuscular dysfunction in nonbacterial prostatitis. Urology. 1987;30(2):183-188PubMedCrossRefGoogle Scholar
  13. 13.
    Harper G, Barde Y, Burnstock G, et al. Guinea pig prostate is a rich source of nerve growth factor. Nature. 1979;279:160-162PubMedCrossRefGoogle Scholar
  14. 14.
    Collins A, Robinson E, Neal D. Benign prostatic stromal cells are regulated by basic fibroblast growth factor and transforming growth factor beta 1. J Endocrinol. 1996;151:315-322PubMedCrossRefGoogle Scholar
  15. 15.
    Paul A, Grant E, Habib F. The expression and localization of beta nerve growth factor in benign and malignant human prostate tissue: relationship to neuroendocrine differentiation. Br J Cancer. 1996;74:1990-1996PubMedCrossRefGoogle Scholar
  16. 16.
    Story M, Hopp K, Meier D. Regulation of basic fibroblast growth factor expression by transforming growth factor beta in cultured human prostate stromal cells. Prostate. 1996;28:219-226PubMedCrossRefGoogle Scholar
  17. 17.
    Elbadawi A, Goodman D. Autonomic innervation of accessory male genital glands. In: Spring-Mills E, Hafez E, eds. Male Accessory Sex Glands. Amsterdam: Elsevier-North-Holland Biomedical Press; 1980Google Scholar
  18. 18.
    Gosling J. Autonomic innervation of the prostate. In: Hinman F, ed. Benign Prostatic Hypertrophy. New York: Springer; 1983:349-360:chap 32Google Scholar
  19. 19.
    Higgins J, Gosling J. Studies on the structure and intrinsic innervation of normal human prostate. Prostate. 1989;2:5-16CrossRefGoogle Scholar
  20. 20.
    Crowe R, Chapple C, Burnstock G. The human prostate gland: a histochemical and immunohistochemical study of neuropeptides, serotonin, dopamine beta-hydroxylase and acetylcholinesterase in autonomic nerves and ganglia. Br J Urol. 1991;68(1):53-61PubMedCrossRefGoogle Scholar
  21. 21.
    Dail WG. Autonomic innervation of male reproductive genitalia. In: Maggi CA, ed. The Autonomic Nervous System. Nervous Control of the Urogenital System, vol. 6. London: Harwood Academic Publishers; 1993:69-101:chap 9Google Scholar
  22. 22.
    Benoit G, Merlaud L, Meduri G, et al. Anatomy of the prostatic nerves. Surg Radiol Anat. 1994;16(1):23-29PubMedCrossRefGoogle Scholar
  23. 23.
    Setchell B, Maddocks S, Brooks D. Anatomy, Vasculature Innervation, and Fluids of the Male Reproductive Tract. New York: Raven Press; 1994Google Scholar
  24. 24.
    Vaalasti A. Autonomic innervation of the human male accessory sex glands. In: Riva A, Testa RF, eds. Ultrastructure of Male Urogenital Glands: Prostate, Seminal Vesicles, Urethral, and Bulbourethral Glands. New York: Kluwer Academic; 1994:187-196Google Scholar
  25. 25.
    Kepper M, Keast J. Immunohistochemical properties and spinal connections of pelvic autonomic neurons that innervate the rat prostate gland. Cell Tissue Res. 1995;281(3):533-542PubMedCrossRefGoogle Scholar
  26. 26.
    Marson L, Orr R. Identification of rat spinal neurons that innervate the prostate comparison of hypogastric and pelvic inputs using transneuronal tracing with pseudorabies virus. Soc Neurosci. 1996;22:1051 (Abstract)Google Scholar
  27. 27.
    Dixon J, Jen P, Gosling J. A double-label immunohistochemical study of intramural ganglia from the human male urinary bladder neck. J Anat. 1997;190(1):125-134PubMedCrossRefGoogle Scholar
  28. 28.
    Hedlund P, Larsson B, Alm P, et al. Nitric oxide synthase-containing nerves and ganglia in the dog prostate: a comparison with other transmitters. Histochem J. 1996;28(9):635-642PubMedCrossRefGoogle Scholar
  29. 29.
    Hedlund P, Ekstrom P, Larsson B, et al. Heme oxygenase and NO synthase in the human prostate-relation to adrenergic, cholinergic and peptide containing nerves. J Autonom Nerv Syst. 1997;63:115-126CrossRefGoogle Scholar
  30. 30.
    Gosling J, Thompson S. A neurohistochemical and histological study of peripheral autonomic neurons of the human bladder neck and prostate. Urol Int. 1977;32:269PubMedCrossRefGoogle Scholar
  31. 31.
    Baumgarten H, Falck B, Holstein A, et al. Adrenergic innervation of the human testis, epididymis, ductus deferens and prostate: a fluorescence microscopic and fluorometric study. Z Fur Zellforsch Und Mikrosk Anat. 1968;90(1):81-95CrossRefGoogle Scholar
  32. 32.
    Alm P, Allumets J, Hakanson R, et al. Peptidergic (vasoactive intestinal peptide) nerves in the genitourinary tract. Neuroscience. 1977;2(5):751-754PubMedCrossRefGoogle Scholar
  33. 33.
    Dunzendorfer U, Jonas D, Weber W. The autonomic innervation of the human prostate. Histochemistry of acetylcholinesterase in the normal and pathologic states. Urol Res. 1976;4:29-32PubMedCrossRefGoogle Scholar
  34. 34.
    Yokoyama R, Inokuchi T, Satoh H, et al. Distribution of tyrosine hydroxylase (TH)-like, neuropeptide Y (NPY)-like immunoreactive and acetylcholinesterase (ACHE)-positive nerve fibers in the prostate gland of the monkey (Macacus fuscatus). Kurume Med J. 1990;37(1):1-8PubMedGoogle Scholar
  35. 35.
    Danuser H, Springer J, Katofiasc M, et al. Extrinsic innervation of the cat prostate gland; a combined tracing and immunohistochemical study. J Urol. 1997;157(3):1018-1024PubMedCrossRefGoogle Scholar
  36. 36.
    Dixon J, Jen P, Gosling J. The distribution of vesicular acetylcholine transporter and NPY in and nitric oxide in the human genitourinary organs. Neurourol Urodynam. 2000;19:185-194CrossRefGoogle Scholar
  37. 37.
    Vaalasti A, Hervonen A. Autonomic innervation of the human prostate. Invest Urol. 1980;17(4):293-297PubMedGoogle Scholar
  38. 38.
    Shirai M, Sasaki K, Rikimaru A. A histochemical investigation of the distribution of adrenergic and cholinergic nerves in the human male genital organs. Tohoku J Exp Med. 1973;111:281-291PubMedCrossRefGoogle Scholar
  39. 39.
    Plancarte R, Amescua C, Patt RB, et al. Superior hypogastric plexus block for pelvic cancer pain. Anesthesiology. 1990;73(2):236-239.PubMedCrossRefGoogle Scholar
  40. 40.
    Lique M, Coolen JA, Truitt WA, McKenna KE. Central regulation of ejaculation. Physiol Behav. 2004;83(2):203-215Google Scholar
  41. 41.
    Perichino M, Bozzo W, Puppo P, et al. Does transurethral thermotherapy induce long-term alpha blockade? An immunohistochemical study. Eur Urol. 1993;23:299-301Google Scholar
  42. 42.
    Arai Y, Jukuzawa S, Terai A, Yoshida O. Transurethral microwave thermotherapy for benign prostatic hyperplasia – relation between clinical response and prostate histology. Prostate. 1996;28(2):84-88PubMedCrossRefGoogle Scholar
  43. 43.
    Chuang YC, Chiang PH, Yoshimura N, De Miguel F, Chancellor MB. Sustained beneficial effects of intraprostatic botulinum toxin type A on lower urinary tract symptoms and quality of life in men with benign prostatic hyperplasia. BJU Int. 2006;98:1033-1037PubMedCrossRefGoogle Scholar
  44. 44.
    Vaalasti A, Linnoila I, Hervonen A. Immunohistochemical demonstration of VIP, [Met5]-and [Leu5]-enkephalin immunoreactive nerve fibers in the human prostate and seminal vesicles. Histochemistry. 1980;66:89-98PubMedCrossRefGoogle Scholar
  45. 45.
    Eckhardt C. Untersuchungen uber die Erection des Penis beim Hunde. Beitr Anat Physiol. 1863;3:123-166Google Scholar
  46. 46.
    Hedlund H, Andersson K, Larsson B. Alpha-adrenoceptors and muscarinic receptors in the isolated human prostate. J Urol. 1985;134:1291-1298PubMedGoogle Scholar
  47. 47.
    Lepor H, Shapiro E. Characterization of alpha1-adrenergic receptors in human benign prostatic hyperplasia. J Urol. 1984;132:1226-1229PubMedGoogle Scholar
  48. 48.
    Hiebel J, Ruffolo R. The use of alpha-adrenoceptor antagonists in the pharmacological management of benign prostatic hypertrophy: an overview. Pharmacol Res. 1996;33(3):145-160CrossRefGoogle Scholar
  49. 49.
    Shapiro E, Lepor H. Alpha2 adrenergic receptors in hyperplastic human prostate: identification and characterization using 3 H-rauwolscine. J Urol. 1986;135:1038-1043PubMedGoogle Scholar
  50. 50.
    Lepor H, Gup DI, Bauman M, et al. Laboratory assessment of terazosin and a1 blockade in prostatic hyperplasia. Urology. 1988;32:21-26PubMedCrossRefGoogle Scholar
  51. 51.
    Kitada S, Kumazawa J. Pharmacological characteristics of smooth muscle in benign prostatic hyperplasia and normal prostatic tissue. J Urol. 1987;138:158-160PubMedGoogle Scholar
  52. 52.
    Chapple CR, Aubrey ML, James S, et al. Characterisation of human prostatic adrenoceptors using pharmacology receptor binding and localization. Br J Urol. 1989;63:487-496PubMedCrossRefGoogle Scholar
  53. 53.
    Gup D, Shapiro E, Buamann M, et al. Contractile properties of human prostate adenomas and the development of infravesical obstruction. Prostate. 1989;15:105-114PubMedCrossRefGoogle Scholar
  54. 54.
    Eri L, Tveter KJ. a-Blockade in the treatment of symptomatic benign prostatic hyperplasia. J Urol. 1995;154:923-934PubMedCrossRefGoogle Scholar
  55. 55.
    Andersson KE, Lepor H, Wyllie M. Prostate α1 adrenoceptor and uroselectivity. Prostate. 1977;30:202-216CrossRefGoogle Scholar
  56. 56.
    Chapple CR. Selective a1-adrenoceptor antagonists in benign prostatic hyperplasia: rationale and clinical experience. Eur Urol. 1996;129:144Google Scholar
  57. 57.
    Jardin A, Andersson K-E, Caine M, et al. α-blockers therapy in benign prostatic hyperplasia. In: Cockett ATK, Khoury S, Aso Y, Chatelain C, Denis L, Griffiths K, Murphy C, eds. The Third International Consultation on Benign Prostatic Hyperplasia (BPH). New York: SCI; 1996:527-564Google Scholar
  58. 58.
    Forray C, Bard JA, Wetzel JM, et al. The a1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human a1c subtype. Mol Pharmacol. 1994;45:703-708PubMedGoogle Scholar
  59. 59.
    Marshall I, Burt RP, Chapple CR. Noradrenaline contractions of human prostate mediated by a1a-(a1c-)adrenoceptor subtype. Br J Pharmacol. 1995;115:781-786PubMedGoogle Scholar
  60. 60.
    Fabiani ME, Sourial M, Thomas WG, et al. Angiotensin II enhances noradrenaline release from sympathetic nerves of the rat prostate via a novel angiotensin receptor: implications for the pathophysiology of benign prostatic hyperplasia. J Endocrinol. 2001;171(1):97-108PubMedCrossRefGoogle Scholar
  61. 61.
    Caine M, Raz S, Zeigler M. Adrenergic and cholinergic receptors in the human prostate, prostatic capsule and bladder neck. Br J Urol. 1975;47:193-202PubMedCrossRefGoogle Scholar
  62. 62.
    Appell RA, England HR, Hussell AR, et al. The effect of epidural anesthesia on the urethral closure pressure profile in patients with prostatic enlargement. J Urol. 1980;124:410-411PubMedGoogle Scholar
  63. 63.
    Furuya S, Kumamoto Y, Yokoyama E, et al. Alpha-adrenergic activity and urethral pressure in prostatic zone in benign prostatic hypertrophy. J Urol. 1982;128:836-839PubMedGoogle Scholar
  64. 64.
    Nickel JC. Alpha-blockers for the treatment of prostatitis-Like syndromes. Rev Urol. 2006;8(suppl 4):S26-S34PubMedGoogle Scholar
  65. 65.
    Farrell J, Lyman Y. A study of the secretory nerves and the action of certain drugs on, the prostate gland. Am J Phys. 1937;118:64-70Google Scholar
  66. 66.
    Smith E, Lebeaux M. The mediation of the canine prostatic secretion provoked by hypogastric nerve stimulation. Invest Urol. 1970;7(4):313-318PubMedGoogle Scholar
  67. 67.
    Smith E, Lebeaux M. The composition of nerve induced canine prostatic secretion. Invest Urol. 1971;8(2):100-103Google Scholar
  68. 68.
    Bruschini H, Schmidt R, Tanagho E. Neurologic control of prostatic secretion in the dog. Invest Urol. 1978;15(4):288-290PubMedGoogle Scholar
  69. 69.
    Smith ER. The canine prostate and its secretion. In: Thomas JA, Singhai R, eds. Molecular Mechanisms of Gonadal Hormone Action. Baltimore, MD: University Park Press; 1975:167-204Google Scholar
  70. 70.
    Wang J, McKenna KE, Lee C. Determination of prostatic secretion in rats: effect of neurotransmitters and testosterone. Prostate. 1991;18:289-301.PubMedCrossRefGoogle Scholar
  71. 71.
    Lepor H, Khuhar M. Characterization of muscarinic cholinergic receptor binding in the vas deferens, bladder, prostate and penis of the rabbit. J Urol. 1984;132:392-396PubMedGoogle Scholar
  72. 72.
    James S, Chapple C, Phillips M, et al. Autoradiographic analysis of alpha-adrenoceptors and muscarinic cholinergic receptors in the hyperplastic human prostate. J Urol. 1989;142(2 Pt 1):438-444PubMedGoogle Scholar
  73. 73.
    Burnett A, Takeda M, Maguire M, et al. Characterization and localization of nitric oxide synthase in the human prostate. Urology. 1995;45:435-439PubMedCrossRefGoogle Scholar
  74. 74.
    Jen P, Dixon J, Gosling J. Co-localisation of tyrosine hydroxylase, nitric oxide synthase and neuropeptides in neurons of the human postnatal male pelvic ganglia. J Autonom Nerv Syst. 1996;59(1–2):41-50CrossRefGoogle Scholar
  75. 75.
    Jen P, Dixon J, Gerahart J, et al. Nitric oxide synthase and tyrosine hydroxylase are co-localized in nerves supplying the postnatal human male genitourinary organs. J Urol. 1996;155(3):1171-1121CrossRefGoogle Scholar
  76. 76.
    Jen P, Dixon J. Development of peptide-containing nerves in the human fetal prostate gland. J Anat. 1995;187(Pt. 1):169-179PubMedGoogle Scholar
  77. 77.
    Takeda M, Tang R, Shapiro E, et al. Effects of nitric oxide on human and canine prostates. Urology. 1995;45:440-446PubMedCrossRefGoogle Scholar
  78. 78.
    Isaacs J, Steinberg G. A guide to the physiology of the prostate. Cont Urol. 1990;47:54-66Google Scholar
  79. 79.
    McVary KT, Monnig W, Camps JL Jr, Young JM, Tseng LJ, van den Ende G. Sildenafil citrate improves erectile function and urinary symptoms in men with erectile dysfunction and lower urinary tract symptoms associated with benign prostatic hyperplasia: a randomized, double-blind trial. J Urol. 2007;177:1071-1077PubMedCrossRefGoogle Scholar
  80. 80.
    McVary KT, Roehrborn CG, Kaminetsky JC, et al. Tadalafil relieves lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Urol. 2007;177:1401-1407PubMedCrossRefGoogle Scholar
  81. 81.
    Stief CG, Porst H, Neuser D, Beneke M, Ulbrich E. A randomised, placebo-controlled study to assess the efficacy of twice-daily vardenafil in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur Urol. 2008;53:1236-1244PubMedCrossRefGoogle Scholar
  82. 82.
    Smith E, Miller T, Pebler R. Transepithelial voltage changes during prostatic secretion in the dog. Am Phys Soc. 1983;245:F470-F477Google Scholar
  83. 83.
    Jacobs SC, Story MT. Autonomic control of acid phosphatase exocrine secretion by the rat prostate. Urol Res. 1989;17:311-315PubMedCrossRefGoogle Scholar
  84. 84.
    Martinez-Pineiro L, Dahiya R, Nunes L, et al. Pelvic plexus denervation in rats causes morphologic and functional changes of the prostate. J Urol. 1993;150(1):215-218PubMedGoogle Scholar
  85. 85.
    Wang J, McKenna K, McVary K, et al. Requirement of innervation for maintenance of structural and functional integrity in the rat prostate. Biol Reprod. 1991;44(6):1171-1176PubMedCrossRefGoogle Scholar
  86. 86.
    McVary KT, Razzaq A, Lee C, et al. Growth of the rat prostate gland is facilitated by the autonomous nervous system. Biol Reprod. 1994;51:99-107PubMedCrossRefGoogle Scholar
  87. 87.
    Vaalast A, Alho AM, Tainio H. The effect of sympathetic denervation with 6-hydroxydopamine on the ventral prostate of the rat. Acta Histochem. 1986;79:49-54Google Scholar
  88. 88.
    Lamano-Carvalho TL, Favaretto AL, Petenusci SO, et al. Prepubertal development of rat prostate and seminal vesicle following chemical sympathectomy with guanethidine. Braz J Med Biol Res. 1993;26(6):639-646PubMedGoogle Scholar
  89. 89.
    Huang HFS, Li MT, Linsenmeyer T, et al. The effects of spinal cord injury on the status of messenger ribonucleic acid for TRPM2 and androgen receptor in the prostate of the rat. J Androl. 1997;18:250-256PubMedGoogle Scholar
  90. 90.
    Djavan B, Marberger M. A meta-analysis on the efficacy and tolerability of α1-adrenoceptor antagonists in patients with lower urinary tract symptoms suggestive of benign prostatic obstruction. Eur Urol. 1999;36:1-13PubMedCrossRefGoogle Scholar
  91. 91.
    de Reijke TM, Klarskov P. Comparative efficacy of two α-adrenoreceptor antagonists, doxazosin and alfuzosin, in patients with lower urinary tract symptoms from benign prostatic enlargement. BJU Int. 2004;93:757-762PubMedCrossRefGoogle Scholar
  92. 92.
    Hellstrom WJ, Sikka SC. Effects of acute treatment with tamsulosin versus alfuzosin on ejaculatory function in normal volunteers. J Urol. 2006;176:1529-1533PubMedCrossRefGoogle Scholar
  93. 93.
    Foley SJ, Soloman LZ, Wedderburn AW, et al. A prospective study of the natural history of hematuria associated with benign prostatic hyperplasia and the effect of finasteride. J Urol. 2000;163:496-498PubMedCrossRefGoogle Scholar
  94. 94.
    Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349(3):215-224PubMedCrossRefGoogle Scholar
  95. 95.
    Gormley GJ, Stoner E, Bruskewitz RC, et al. The effect of finasteride in men with benign prostatic hyperplasia. The Finasteride Study Group. N Engl J Med. 1992;327:1185-1191PubMedCrossRefGoogle Scholar
  96. 96.
    Roehrborn CG, Marks LS, Fenter T, et al. Efficacy and safety of dutasteride in the four-year treatment of men with benign prostatic hyperplasia. Urology. 2004;63:709-715PubMedCrossRefGoogle Scholar
  97. 97.
    Roehrborn CG. Alfuzosin 10 mg once daily prevents overall clinical progression of benign prostatic hyperplasia but not acute urinary retention: results of a 2-year placebo-controlled study. BJU Int. 2006;97:734-741PubMedCrossRefGoogle Scholar
  98. 98.
    Kirby RS, Roehrborn C, Boyle P, et al. Efficacy and tolerability of doxazosin and finasteride, alone or in combination, in treatment of symptomatic benign prostatic hyperplasia: the Prospective European Doxazosin and Combination Therapy (PREDICT) trial. Urology. 2003;61:119-126PubMedCrossRefGoogle Scholar
  99. 99.
    Lepor H, Williford WO, Barry MJ, et al. The efficacy of terazosin, finasteride, or both in benign prostatic hyperplasia. Veterans Affairs Cooperative Studies Benign Prostatic Hyperplasia Study Group. N Engl J Med. 1996;335:533-539PubMedCrossRefGoogle Scholar
  100. 100.
    McConnell JD, Roehrborn CG, Bautista OM, et al. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med. 2003;349:2387-2398PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • William D. Steers
    • 1
  1. 1.Department of UrologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations