Urologic Endocrinology

  • Paolo Verze
  • Vincenzo Mirone
Part of the Springer Specialist Surgery Series book series (SPECIALIST)


Urology is a specialist discipline having both medical and surgical aspects. In recent years, a growing interest in medical urological diseases of mainly endocrinological origin has emerged. Within this context, age-related male hypogonadism is of paramount importance. Recent preclinical and clinical data has demonstrated the critical consequences of hypogonadism not only on sexual behavior, but also on the entire psychophysical health of men as testosterone regulates the functional properties of multiple body tissues.


Renal Cell Carcinoma Androgen Receptor Luteinizing Hormone Testosterone Level Androgen Deprivation Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jeffcoate SL, Brocks RV, Lin NY, London DR. Androgen production in hypogonadal men. J Endocrinol. 1967;37: 401-411PubMedGoogle Scholar
  2. 2.
    Wheeler MJ. Determination of bio-available testosterone. Ann Clin Biochem. 1995;32:345-357PubMedGoogle Scholar
  3. 3.
    Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenoussteroids to both testosterone-bind in globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981;53:58-68PubMedGoogle Scholar
  4. 4.
    American Association of Clinical Endocrinologists. Medical guidelines for clinical practice for the evaluation and treatment of hypogonadism in adult male patients: 2002 update. Endocr Pract. 2002;8:440-456Google Scholar
  5. 5.
    Ribeiro RS, Abucham J. Kallmann syndrome: a historical, clinical and molecular review. Arq Bras Endocrinol Metabol. 2008;52(1):8-17PubMedGoogle Scholar
  6. 6.
    Bhagavath B, Layman LC. The genetics of hypogonadotropic hypogonadism. Semin Reprod Med. 2007;25(4):272-286PubMedGoogle Scholar
  7. 7.
    Conway AJ, Handelsman DJ, Lording DW, Stuckey B, Zajac JD. Use, misuse and abuse of androgens: the endocrine society of Australia consensus guidelines for androgen prescribing. Med J Aust. 2000;172:220-224PubMedGoogle Scholar
  8. 8.
    Jockenhovel F. Male Hypogonadism – Practical Aspect of Androgen Therapy. Bremen, Germany: Uni-Med Verlag; 2004Google Scholar
  9. 9.
    Nieschlag E, Jockenhovel F. Hypogonadismus beim mann – Androgenmangel-Sdrom. In: Hesch RD, ed. Endokrinologie. Munchen, Germany: Urban & Schwarzenberg; 1989:1216-1220Google Scholar
  10. 10.
    Layman LC. Hypogonadotropic hypogonadism. Endo-crinol Metab Clin North Am. 2007;36(2):283-296PubMedGoogle Scholar
  11. 11.
    Gray A, Feldman HA, McKinley JB, Longcope C. Age, disease and changing sex hormone levels in middle-aged men: results of the Massachusetts male aging study. J Clin Endocrinol Metab. 1991;73:1016-1025PubMedGoogle Scholar
  12. 12.
    Morley JE, Kaiser FE, Perry HMIII, et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 1997;46:410-413PubMedGoogle Scholar
  13. 13.
    Deslypere JP, Vermeulen A. Leydig cell function in normal men: effect of age, life-style, residence, diet, and activity. J Clin Endocrinol Metab. 1984;59:955-962PubMedGoogle Scholar
  14. 14.
    Morley JE, Kaiser F, Raum WJ, et al. Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio of insulin-like growth factor 1 to growth hormone. Proc Natl Acad Sci. 1997;94:7537-7542PubMedGoogle Scholar
  15. 15.
    Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implication. Endocr Rev. 2005;26(6):833-876PubMedGoogle Scholar
  16. 16.
    Morley J, Perry HM. Androgen treatment of male hypogonadism in older males. J Steroid Biochem Mol Biol. 2003;85:367-373PubMedGoogle Scholar
  17. 17.
    Neaves WB, Johnson L, Porter JC, Parker CR, Petty CS. Leydig cell numbers, daily sperm production and serum gonadotrophin levels in aging men. J Clin Endocrinol Metab. 1984;59:756-763PubMedGoogle Scholar
  18. 18.
    Vermeulen A, Desylpere JP. Intratesticular unconjugated steroids in elderly men. J Steroid Biochem. 1986; 24:1079-1089PubMedGoogle Scholar
  19. 19.
    Sasano M, Ishyo S. Vascular patterns of the human testes with special reference to its senile changes. J Exp Med. 1969;99:269-280Google Scholar
  20. 20.
    Suoranta H. Changes in small blood vessels of the adult human testes in relation to age and some pathological conditions. Virchows Arch A Pathol Anat. 1971;352:765-781Google Scholar
  21. 21.
    Vermeulen A, Desylpere JP, Kaufman JM. Influence of anti-opioids and luteinizing hormone pulsatility in aging men. J Clin Endocrinol Metab. 1989;68:68-72PubMedGoogle Scholar
  22. 22.
    Winters SJ, Sherins RJ, Troen P. The gonadotropin suppressive activity of androgens is increased in elderly men. Metabolism. 1984;33:1052-1059PubMedGoogle Scholar
  23. 23.
    Morales A, Schulman CC, Tostain JCW, Wu F. Testosterone deficiency syndrome (TDS) needs to be named appropriately – the importance of accurate terminology. Eur Urol. 2006;50:407-409PubMedGoogle Scholar
  24. 24.
    Nieschlag E, Swerdloff R, Behre HM, et al. Investigation, treatment, and monitoring of late-onset hypogonadism in males: ISA, ISSAM, and EAU recommendations. J Androl. 2006;27:135-137PubMedGoogle Scholar
  25. 25.
    Park K, Seo JJ, Kang HK, Ryu SB, Kim HJ, Jeong GW. A new potential of blood oxygenation level dependent (BOLD) functional MRI for evaluating cerebral centers of penile erection. Int J Impot Res. 2001;13:73-81PubMedGoogle Scholar
  26. 26.
    Christian Stief. Testosterone and erection: practical management for the patient with erectile dysfunction. Eur Urol Suppl. 2007;6(17):868-873Google Scholar
  27. 27.
    Wang C, Swerdloff RS, Iranmanesh A, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength and body composition parameters in hypogonadal men. J Clin Endocrinol Metab. 2000;85: 2839-2853PubMedGoogle Scholar
  28. 28.
    Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men: Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 2001;86:724-731PubMedGoogle Scholar
  29. 29.
    Feldman Ha, Longcope C, Derby Ca, et al. Age trends in the levels of serum testosterone and other hormone in middle age men: longitudinal results of the Massachusetts ale aging study. J Clin Endocrinol Metab. 2002; 87:589PubMedGoogle Scholar
  30. 30.
    Isaacs JT. Testosterone and the prostate. In: Nieschlag E, Behre HM, eds. Testosterone: Action, Deficiency, Substitution. 3rd ed. Cambridge, UK: Cambridge University Press; 2004:347-374Google Scholar
  31. 31.
    David Crawford E. Testosterone substitution and the prostate. Eur Urol Suppl. 2005;4:16-23Google Scholar
  32. 32.
    Frye CA, Seliga AM. Testosterone increases analgesia, anxiolysis, and cognitive performance of male rats. Cogn Affect Behav Neurosci. 2001;1:371-381PubMedGoogle Scholar
  33. 33.
    McKeever WF, Deyo A. Testosterone, dihydrotestosterone and spatial task performance of males. Bull Psychon Soc. 1990;28:305-308Google Scholar
  34. 34.
    Wang C, Swerdloff RS. Should the nonaromatizable androgen dihydrotestosterone be considered as an alternative to testosterone in the treatment of the andropause? J Clin Endocrinol Metab. 2002;87(4): 1462-1466PubMedGoogle Scholar
  35. 35.
    Edinger KL, Frye CA. Testosterone’s analgesic, anxiolytic, and cognitive-enhancing effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Behav Neurosci. 2004;118(6): 1352-1364PubMedGoogle Scholar
  36. 36.
    Wang C, Alexander G, German N, et al. Testosterone replacement therapy improves mood in hypogonadal men – a clinical research center study. J Clin Endocrinol Metab. 1996;81:3578-3583PubMedGoogle Scholar
  37. 37.
    Morley JE, Perry HM, Kaiser FE, et al. Effect of testosterone replacement therapy in old hypogonadal males: a preliminary study. J Am Geriatr Soc. 1993;41:149-152PubMedGoogle Scholar
  38. 38.
    Brodsky IG, Balagogal P, Nair KS. Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men – a clinical research center study. J Clin Endocrinol Metab. 1996;81:3469-3475PubMedGoogle Scholar
  39. 39.
    Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Aging Dev. 1999;107:123-136PubMedGoogle Scholar
  40. 40.
    Snyder PJ, Peachy H, Hannoush P, et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab. 1999;84:2647-2653PubMedGoogle Scholar
  41. 41.
    Marin P, Holmang S, Gustafson C, et al. Androgen treatment of abdominally obese men. Obes Res. 1993;1:245-248PubMedGoogle Scholar
  42. 42.
    Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology. 2003;144:5081PubMedGoogle Scholar
  43. 43.
    Kasperk CH, Wergedal JE, Farley JR, Linkhart TA, Turner RT, Baylink DJ. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology. 1989;124:1576-1578PubMedGoogle Scholar
  44. 44.
    Bellido T, Jilka RL, Boyce BF, et al. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest. 1995;95:2886-2895PubMedGoogle Scholar
  45. 45.
    van den Beld AW, de Jong FH, Grobbee DE, Pols HAP, Lamberts SWJ. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab. 2000;85:3276-3282PubMedGoogle Scholar
  46. 46.
    Goldray D, Weisan Y, Jaccard N, et al. Decreased bone density in elderly men treated with the gonadotropin-releasing hormone agonist decapeptyl (D-Tryp6-GnRH). J Clin Endocrinol Metab. 1993;76: 288-290PubMedGoogle Scholar
  47. 47.
    Stanley HL, Schmitt BP, Poses RM, Deiss WP. Does hypogonadism contribute to the occurrence of minimal trauma hip fracture in elderly men? J Am Gerontol Soc. 1991;39:766-771Google Scholar
  48. 48.
    Jackson JA, Riggs MW, Spiekerman AM. Testosterone deficiency as a risk factor for hip fractures in men: a casecontrol study. Am J Med Sci. 1992;304:4-8PubMedGoogle Scholar
  49. 49.
    Spivak JL. The blood in systemic disorders. Lancet. 2000;355:1707-1712PubMedGoogle Scholar
  50. 50.
    Gardner FH, Besa EC. Physiologic mechanisms and the hematopoietic effects of the androstanes and their derivatives. Curr Top Hematol. 1983;4:123-195PubMedGoogle Scholar
  51. 51.
    Shahidi NT. Androgens and erythropoiesis. N Engl J Med. 1973;289:72-80PubMedGoogle Scholar
  52. 52.
    Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency. Aging Male. 2003;6:1PubMedGoogle Scholar
  53. 53.
    Laaksonen DE, Niskanen L, Punnonen K, et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diab Care. 2004;27:1036Google Scholar
  54. 54.
    Marin P, Oden B, Bjorntop P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metab. 1995;80:239-243PubMedGoogle Scholar
  55. 55.
    Hak AE, Witteman JC, de Jong FH, et al. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab. 2002;87:3632-3639PubMedGoogle Scholar
  56. 56.
    Rahman F, Christian HC. Non-classical actions of testosterone: an update. Trends Endocrinol Metab. 2007; 18:371-378PubMedGoogle Scholar
  57. 57.
    Foresta C, Zuccarello D, De Toni L, Garolla A, Caretta N, Ferlin A. Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clin Endocrinol Oxf. 2008;68:284-289PubMedGoogle Scholar
  58. 58.
    Bowles DK, Maddali KK, Dhulipala VC, Korzick DH. PKC delta mediates anti-proliferative, pro-apoptic effects of testosterone on coronary smooth muscle. Am J Physiol Cell Physiol. 2007;293:C805-C813PubMedGoogle Scholar
  59. 59.
    Morales A. Andropause (or symptomatic late-onset hypogonadism): facts, fiction and controversies. Aging Male. 2004;7:297-303PubMedGoogle Scholar
  60. 60.
    Bettocchi C. Late-onset hypogonadism (LOH): incidence, diagnosis, and short-term effects. Eur Urol Suppl. 2005;4:4-9Google Scholar
  61. 61.
    Araujo AB, O’Donnell AB, Brambilla DJ, et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts male aging study. J Clin Endocrinol Metab. 2004;89:5920-5926PubMedGoogle Scholar
  62. 62.
    Wang C. Challenges in the diagnosis of the right patient for testosterone replacement therapy. Eur Urol Suppl. 2007;6:862-867Google Scholar
  63. 63.
    Jockenho F, Kaufman J, Mickisch G, Morales A, Wang C. The good, the bad, and the unknown of late onset hypogonadism: the urological perspective. J Men Health Gend. 2005;2(3):292-301Google Scholar
  64. 64.
    Wang C, Swerdloff R, Kipnes M, et al. New testosterone buccal system (Striant) delivers physiological testosterone levels: pharmacokinetics study in hypogonadal men. J Clin Endocrinol Metab. 2004;89(8):3821-3829PubMedGoogle Scholar
  65. 65.
    Sokol RZ, Palacios A, Campfield LA. Comparison of the kinetics of injectable testosterone in eugonadal and hypogonadal men. Fertil Steril. 1982;37:425-430PubMedGoogle Scholar
  66. 66.
    Schubert M, Minnemann T, Hubler D, et al. Intramuscular testosterone undecanoate:pharmacokinetic aspects of a novel testosterone formulation during long-term treatment of menwith hypogonadism. J Clin Endocrinol Metab. 2004;89(11):5429-5434PubMedGoogle Scholar
  67. 67.
    Bradwin SW, Swerdloff RS, Santen RJ. Androgens: risks and benefits. J Clin Endocrinol Metab. 1991;73:4-7Google Scholar
  68. 68.
    Arver S, Meikle AW, Dobbs AS, et al. Permeation enhanced testosterone transdermal systems in the treatment of male hypogonadism: long term effects. J Endocrinol. 1996;148:254-259Google Scholar
  69. 69.
    Rhoden EL, Morgentaler A. Risks of testosterone-replacement therapy and recommendations for monitoring. N Engl J Med. 29, 2004;350(5):482-492PubMedGoogle Scholar
  70. 70.
    Comhaire FH. Andropause: hormone replacement therapy in the aging male. Eur Urol. 2000;38:655-662PubMedGoogle Scholar
  71. 71.
    Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. J Urol. 2002;168:9-12PubMedGoogle Scholar
  72. 72.
    Schalken J. Androgen receptor mediated growth of prostate (cancer). Eur Urol Suppl. 2005;4:4-11Google Scholar
  73. 73.
    Marks LS, Mazer NA, Mostaghel E, et al. Effect of testosterone replacement therapy on prostate tissue in men with late-onset hypogonadism: a randomized controlled trial. JAMA. 2006;296:2351-2361PubMedGoogle Scholar
  74. 74.
    Curran MJ, Bihrle W III. Dramatic rise in prostate-specific antigen after androgen replacement in a hypogonadal man with occult adenocarcinoma of the prostate. Urology. 1999;53:423-424PubMedGoogle Scholar
  75. 75.
    Loughlin KR, Richie JP. Prostate cancer after exogenous testosterone treatment for impotence. J Urol. 1997;157: 1845PubMedGoogle Scholar
  76. 76.
    Rhoden EL, Morgentaler A. Testosterone replacement therapy in hypogonadal men at high risk for prostate cancer: results of 1 year of treatment in men with prostatic intraepithelial neoplasia. J Urol. 2003; 170(Issue: 6, Part 1):2348-2351PubMedGoogle Scholar
  77. 77.
    Morgentaler A. Testosterone replacement therapy and prostate cancer. Urol Clin North Am. 2007;34:555-563PubMedGoogle Scholar
  78. 78.
    Morgentaler A. Testosterone and prostate cancer: an historical perspective on a modern myth. Eur Urol. 2006;50:935-939PubMedGoogle Scholar
  79. 79.
    Hoffman MA, DeWolf WC, Morgentaler A. Is low serum free testosterone a marker for high grade prostate cancer? J Urol. 2000;163:824-827PubMedGoogle Scholar
  80. 80.
    Yamamoto S, Yonese J, Kawakami S, et al. Preoperative serum testosterone level as an independent predictor of treatment failure following radical prostatectomy. Eur Urol. 2007;52:696-701PubMedGoogle Scholar
  81. 81.
    Teloken C, Da Ros CT, Caraver F, Weber FA, Cavalheiro AP, Graziottin TM. Low serum testosterone levels are associated with positive surgical margins in radical retropubic prostatectomy: hypogonadism represents bad prognosis in prostate cancer. J Urol. 2005;174:2178-2180PubMedGoogle Scholar
  82. 82.
    Isbarn H, Boccon-Gibod L, Carroll PR, et al. Androgen deprivation therapy for the treatment of prostate cancer: consider both benefits and risks. Eur Urol. 2009; 55(1):62-75PubMedGoogle Scholar
  83. 83.
    Smith MR, Finkelstein JS, McGovern FJ, et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J Clin Endocrinol Metab. 2002;87:599-603PubMedGoogle Scholar
  84. 84.
    Braga-Basaria M, Dobs AS, Muller DC, et al. Metabolic syndrome in men with prostate cancer undergoing longterm androgen-deprivation therapy. J Clin Oncol. 2006;24:3979-3983PubMedGoogle Scholar
  85. 85.
    Smith MR, Lee H, Fallon MA, Nathan DM. Adipocytokines, obesity, and insulin resistance during combined androgen blockade for prostate cancer. Urology. 2008;71:318-322PubMedGoogle Scholar
  86. 86.
    Smith MR, Lee H, McGovern F, et al. Metabolic changes during gonadotropin-releasing hormone agonist therapy for prostate cancer: differences from the classic metabolic syndrome. Cancer. 2008;112: 2188-2194PubMedGoogle Scholar
  87. 87.
    Green HJ, Pakenham KI, Headley BC, et al. Altered cognitive function in men treated for prostate cancer with luteinizing hormone-releasing hormone analogues and cyproterone acetate: a randomized controlled trial. BJU Int. 2002;90(4):427-432PubMedGoogle Scholar
  88. 88.
    Jenkins VA, Bloomfield DJ, Shilling VM, Edginton TL. Does neoadjuvant hormone therapy for early prostate cancer affect cognition? Results from a pilot study. BJU Int. 2005;96(1):48-53PubMedGoogle Scholar
  89. 89.
    Alibhai SM, Gogov S, Allibhai Z. Long-term side effects of androgen deprivation therapy in men with non-metastatic prostate cancer: a systematic literature review. Crit Rev Oncol Hematol. 2006;60(3):201-215PubMedGoogle Scholar
  90. 90.
    Daniell HW, Dunn SR, Ferguson DW, Lomas G, Niazi Z, Stratte PT. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol. 2000; 163:181-186PubMedGoogle Scholar
  91. 91.
    Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352:154-164PubMedGoogle Scholar
  92. 92.
    Smith MR, Lee WC, Brandman J, Wang Q, Botteman M, Pashos CL. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol. 2005;23:7897-7903PubMedGoogle Scholar
  93. 93.
    Smith MR, Boyce SP, Moyneur E, Duh MS, Raut MK, Brandman J. Risk of clinical fractures after gonadotropin- releasing hormone agonist therapy for prostate cancer. J Urol. 2006;175:136-139PubMedGoogle Scholar
  94. 94.
    Jacobson LO, Goldwasser E, Fried W, Plzak L. Role of the kidney in erythropoiesis. Nature. 1957;179:633-634PubMedGoogle Scholar
  95. 95.
    Koury ST, Bondurant MC, Koury MJ. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood. 1988;71:524-527PubMedGoogle Scholar
  96. 96.
    Sawada K, Krantz SB, Dai C-H, et al. Purification of human blood burst-forming units-erythroid and demonstration of the evolution of erythropoietin receptor. J Cell Physiol. 1990;142:219-230PubMedGoogle Scholar
  97. 97.
    Wickrema A, Krantz SB, Winkelmann JC, Bondurant MC. Differentiation and erythropoietin receptor gene expression in human erythroid progenitor cells. Blood. 1992;80:1940-1949PubMedGoogle Scholar
  98. 98.
    Sawyer ST, Koury MJ. Erythropoietin requirement during terminal erythroid differentiation: the role of surface receptors for erythropoietin (Abs). J Cell Biol. 1987;105:1077Google Scholar
  99. 99.
    Garcia MM, Beckman BS, Brookins JW, et al. Development of a new radioimmunoassay for EPO using recombinant erythropoietin. Kidney Int. 1990; 38:969-975Google Scholar
  100. 100.
    Spivak JL. Erythropoietin use and abuse: when physiology and pharmacology collide. Adv Exp Med Biol. 2001;502:207-224PubMedGoogle Scholar
  101. 101.
    McGonigle RJS, Boineau FG, Ohene-Frempong K, Lewy JE, Shadduck RK, Fisher JW. Erythropoietin and inhibitors of in vitro erythropoiesis in the development of anemia in children with renal disease. J Lab Clin Med. 1985;105:449-481PubMedGoogle Scholar
  102. 102.
    Radtke HW, Rege AB, Lamarche MB, Bartos D, Campbell RA, Fisher JW. Identification of spermine as an inhibitor of erythropoiesis in patients with chronic renal failure. J Clin Invest. 1980;67:1623-1629Google Scholar
  103. 103.
    Maalouf NM. The noncalciotropic actions of vitamin D: recent clinical developments. Curr Opin Nephrol Hypertens. 2008;17(4):408-415PubMedGoogle Scholar
  104. 104.
    Zehnder D, Hewison M. The renal function of 25-hydroxyvitamin D3-1alpha-hydroxylase. Mol Cell Endocrinol. 1999;151(1–2):213-220PubMedGoogle Scholar
  105. 105.
    Gal-Moscovici A, Sprague SM. Role of vitamin D deficiency in chronic kidney disease. J Bone Miner Res. December 2007;22(2):V91-V94PubMedGoogle Scholar
  106. 106.
    Schweda F, Friis U, Wagner C, Skott O, Kurtz A. Renin release. Physiol Bethesda. 2007;22:310-319Google Scholar
  107. 107.
    Churchill PC. Cellular mechanisms of renin release. Clin Exp Hypertens A. 1988;10(6):1189-1202PubMedGoogle Scholar
  108. 108.
    Wang G, Zhang XC, Pan BN, Na YQ. Diagnosis and management of primary hyperparathyrodism with urolithiasis. Zhonghua Yi Xue Za Zhi. 2005;85(9):618-620PubMedGoogle Scholar
  109. 109.
    Ruda JM, Hollenbeak CS, Stack BC. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg. 2005;132:359-372PubMedGoogle Scholar
  110. 110.
    Suh JM, Cronan JJ, Monchik JM. Primary hyperparathyroidism: is there an increased prevalence of renal stone disease? Am J Roentgenol. 2008;191(3): 908-911Google Scholar
  111. 111.
    Sorensen HA. Surgery for primary hyperparathyroidism. BMJ. October 12, 2002;325(7368):785-786PubMedGoogle Scholar
  112. 112.
    Tonini G, Vincenzi B, Santini D. Paraneoplastic syndromes: what we know and what we should know. Clin Ter. 2006;157(2):93-94PubMedGoogle Scholar
  113. 113.
    Forga L, Anda E, de Esteban JP Martínez. Paraneoplastic hormonal syndromes. An Sist Sanit Navar. 2005;28(2):213-226PubMedGoogle Scholar
  114. 114.
    DeLellis RA, Xia L. Paraneoplastic endocrine synd-romes: a review. Endocr Pathol. Winter 2003;14(4):303-317PubMedGoogle Scholar
  115. 115.
    Palapattu Ganesh S, Blaine Kristo, Jacob Rajfer. Paraneoplastic syndromes in urologic malignancy: the many faces of renal cell carcinoma. Rev Urol. 2002;4(4): 163-170PubMedGoogle Scholar
  116. 116.
    Muggia FM. Overview of cancer-related hypercalcemia: epidemiology and etiology. Semin Oncol. 1990;17:3-9PubMedGoogle Scholar
  117. 117.
    Mundy GR, Ibbotson KJ, D’Souza SM, et al. The hypercalcemia of cancer. N Engl J Med. 1984;310:1718-1727PubMedGoogle Scholar
  118. 118.
    Plimpton CH, Gellhorn A. Hypercalcemia in malignant disease without evidence of bone destruction. Am J Med. 1956;21:750-759PubMedGoogle Scholar
  119. 119.
    Mangin M, Webb AC, Dreyer BE, et al. Identification of a cDNA encoding a parathyroid hormone-like peptide from a human tumor associated with humoral hypercalcemia of malignancy. Proc Natl Acad Sci USA. 1988; 85:597-601PubMedGoogle Scholar
  120. 120.
    Mundy GR. Pathophysiology of cancer-associated hypercalcemia. Semin Oncol. 1990;17:10-15PubMedGoogle Scholar
  121. 121.
    Ritch PS. Treatment of cancer-related hypercalcemia. Semin Oncol. 1990;17:26-33PubMedGoogle Scholar
  122. 122.
    Lindop GBM, Fleming S. Renin in renal cell carcinoma – an immuno-cytochemical study using an antibody to pure human renin. J Clin Pathol. 1984;37:27-31PubMedGoogle Scholar
  123. 123.
    Sufrin G, Mirand EA, Moore RH, et al. Hormones in renal cancer. J Urol. 1977;117:433-438PubMedGoogle Scholar
  124. 124.
    Dahl T, Eide I, Fryjordet A. Hypernephroma and hypertension. Acta Med Scand. 1981;209:121-124PubMedGoogle Scholar
  125. 125.
    Nielsen OJ, Jespersen FF, Hilden M. Erythropoietin-induced secondary polycythemia in a patient with a renal cell carcinoma. APMIS. 1988;96:688-694PubMedGoogle Scholar
  126. 126.
    Stauffer MH. Nephrogenic hepatosplenomegaly. Gastroenterology. 1961;40:694Google Scholar
  127. 127.
    Boxer RJ, Weisman J, Leiber MM, et al. Nonmetastatic hepatic dysfunction syndrome associated with renal cell carcinoma. J Urol. 1978;119:468-471PubMedGoogle Scholar
  128. 128.
    Hanash KA. The nonmetastatic hepatic dysfunction syndrome associated with renal cell carcinoma (hypernephroma): Stauffer’s syndrome. In: Kuss R, Khoury S, Murphy GP, et al., eds. Renal Tumors: Proceedings of the First International Symposium on Kidney Tumors. New York, NY: Liss; 1982:301-316Google Scholar
  129. 129.
    Eddleston ALWF. Immunology and the liver. In: Parker CW, ed. Clinical Immunology. Philadelphia, PA: Saunders; 1980:1009Google Scholar
  130. 130.
    Coukos WS, Kozlowski JM, Bauer KD, et al. Induction of nonmetastatic hepatic dysfunction (Stauffer’s syndrome) by a human sarcomatoid renal cell carcinoma in athymic mice. J Urol. 1986;135:322AGoogle Scholar
  131. 131.
    Tsukamoto T, Kumamoto Y, Miyao N, et al. Interleukin-6 in renal cell carcinoma. J Urol. 1992;148:1778-1782PubMedGoogle Scholar
  132. 132.
    Walsh PN, Kissane JM. Non-metastatic hypernephroma with reversible hepatic dysfunction. Arch Intern Med. 1968;122:214-222PubMedGoogle Scholar
  133. 133.
    Braunstein GD, Vaitukaitis JL, Carbone PP, et al. Ectopic production of human chorionic gonadotropin by neoplasms. Intern Med. 1973;78:39-45Google Scholar
  134. 134.
    Kuida C, Braunstein GD, Shintaku P, et al. Human chorionic gonadotropin expression in lung, breast and renal carcinomas. Arch Pathol Lab Med. 1988;112:282-285PubMedGoogle Scholar
  135. 135.
    Pavelic K, Popovic M. Insulin and glucagon secretion by renal adenocarcinoma. Cancer. 1981;48:98PubMedGoogle Scholar
  136. 136.
    Riggs BL, Sprauge RG. Association of Cushing’s syndrome and neoplastic disease. Arch Intern Med. 1961;108:841-849PubMedGoogle Scholar
  137. 137.
    Turkington RW. Ectopic production of prolactin. N Engl J Med. 1971;285:1455-1461PubMedGoogle Scholar
  138. 138.
    Nishiyama T, Washiyama K, Tanikawa T, et al. Gynecomastia and ectopic human chorionic gonadotropin production by transitional cell carcinoma of the bladder. Urol Int. 1992;48(4):463-465PubMedGoogle Scholar
  139. 139.
    Caron P, Averous S, Combelles JL, Louvet JP, Sarramon JP. Gynecomastia and cancer of the bladder: an ectopic secretion of chorionic gonadotropin hormone. Ann Urol Paris. 1984;18(1):42-44PubMedGoogle Scholar
  140. 140.
    Nimalasena S, Freeman A, Harland S. Paraneoplastic Cushing’s syndrome in prostate cancer: a difficult management problem. BJU Int. 2008;101(4):424-427PubMedGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Paolo Verze
    • 1
  • Vincenzo Mirone
    • 1
  1. 1.Department of UrologyUniversity of Naples, AOU “Federico II”NaplesItaly

Personalised recommendations