Skip to main content

Pathophysiology of Renal Obstruction

  • Chapter
  • First Online:
Practical Urology: Essential Principles and Practice

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

  • 1840 Accesses

Abstract

Renal obstruction can be caused by intrinsic or extrinsic factors that affect the ureters, bladder, or urethra. Most of the literature concerning the pathophysiology of renal obstruction has focused on unilateral ureteral obstruction (UUO) or bilateral ureteral obstruction (BUO). Table 15.1 lists possible causes of renal obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhillon HK. Prenatally diagnosed hydronephrosis: the Great Ormond Street experience. Br J Urol. 1998;81 (suppl 2):39-44

    PubMed  Google Scholar 

  2. Chung S et al. Diuretic renography in the evaluation of neonatal hydronephrosis: is it reliable? J Urol. 1993;150(2 pt 2):765-768

    PubMed  CAS  Google Scholar 

  3. Hafez AT et al. Analysis of trends on serial ultrasound for high grade neonatal hydronephrosis. J Urol. 2002; 168(4 pt 1):1518-1521

    PubMed  Google Scholar 

  4. Lee RS et al. Antenatal hydronephrosis as a predictor of postnatal outcome: a meta-analysis. Pediatrics. 2006; 118(2):586-593

    Article  PubMed  Google Scholar 

  5. Huang WY et al. Renal biopsy in congenital ureteropelvic junction obstruction: evidence for parenchymal maldevelopment. Kidney Int. 2006;69(1):137-143

    Article  PubMed  Google Scholar 

  6. Elder JS et al. Renal histological changes secondary to ureteropelvic junction obstruction. J Urol. 1995;154(2 pt 2): 719-722

    PubMed  CAS  Google Scholar 

  7. Rosen S et al. The kidney in congenital ureteropelvic junction obstruction: a spectrum from normal to nephrectomy. J Urol. 2008;179(4):1257-1263

    Article  PubMed  Google Scholar 

  8. Airik R, Kispert A. Down the tube of obstructive nephropathies: the importance of tissue interactions during ureter development. Kidney Int. 2007;72(12):1459-1467

    Article  PubMed  CAS  Google Scholar 

  9. Airik R et al. Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest. 2006;116(3):663-674

    Article  PubMed  CAS  Google Scholar 

  10. Brenner-Anantharam A et al. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development. 2007;134(10):1967-1975

    Article  PubMed  CAS  Google Scholar 

  11. Miyazaki Y et al. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000;105(7):863-873

    Article  PubMed  CAS  Google Scholar 

  12. Miyazaki Y et al. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int. 2003; 63(3):835-844

    Article  PubMed  CAS  Google Scholar 

  13. Chevalier RL. Perinatal obstructive nephropathy. Semin Perinatol. 2004;28(2):124-131

    Article  PubMed  Google Scholar 

  14. Oshima K et al. Angiotensin type II receptor expression and ureteral budding. J Urol. 2001;166(5):1848-1852

    Article  PubMed  CAS  Google Scholar 

  15. Dunn NR et al. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol. 1997;188(2):235-247

    Article  PubMed  CAS  Google Scholar 

  16. Hinman F. Renal counterbalance. Cal West Med. 1926;24(3):333-335

    PubMed  CAS  Google Scholar 

  17. Taki M, Goldsmith DI, Spitzer A. Impact of age on effects of ureteral obstruction on renal function. Kidney Int. 1983;24(5):602-609

    Article  PubMed  CAS  Google Scholar 

  18. Chevalier RL et al. Unilateral ureteral obstruction in early development alters renal growth: dependence on the duration of obstruction. J Urol. 1999;161(1):309-313

    Article  PubMed  CAS  Google Scholar 

  19. Mandell J et al. Human fetal compensatory renal growth. J Urol. 1993;150(2 pt 2):790-792

    PubMed  CAS  Google Scholar 

  20. Koff SA et al. The assessment of obstruction in the newborn with unilateral hydronephrosis by measuring the size of the opposite kidney. J Urol. 1994;152(2 pt 2): 596-599

    PubMed  CAS  Google Scholar 

  21. Gruskin AB, Edelmann CM Jr, Yuan S. Maturational changes in renal blood flow in piglets. Pediatr Res. 1970; 4(1):7-13

    Article  PubMed  CAS  Google Scholar 

  22. Chevalier RL, Gomez RA. Response of the renin-angiotensin system to relief of neonatal ureteral obstruction. Am J Physiol. 1988;255(6 pt 2):F1070-7

    PubMed  CAS  Google Scholar 

  23. Chevalier RL, Thornhill BA. Ureteral obstruction in the neonatal rat: renal nerves modulate hemodynamic effects. Pediatr Nephrol. 1995;9(4):447-450

    Article  PubMed  CAS  Google Scholar 

  24. Chevalier RL, Kaiser DL. Chronic partial ureteral obstruction in the neonatal guinea pig I. Influence of uninephrectomy on growth and hemodynamics. Pediatr Res. 1984;18(12):1266-1271

    Article  PubMed  CAS  Google Scholar 

  25. Chevalier RL, Thornhill BA, Gomez RA. EDRF modulates renal hemodynamics during unilateral ureteral obstruction in the rat. Kidney Int. 1992;42(2): 400-406

    Article  PubMed  CAS  Google Scholar 

  26. Greger R. Physiology of renal sodium transport. Am J Med Sci. 2000;319(1):51-62

    Article  PubMed  CAS  Google Scholar 

  27. Alexander RT, Grinstein S. Na+/H + exchangers and the regulation of volume. Acta Physiol (Oxf). 2006;187(1–2):159-167

    Article  CAS  Google Scholar 

  28. Wen JG et al. Obstructive nephropathy: an update of the experimental research. Urol Res. 1999;27(1):29-39

    Article  PubMed  CAS  Google Scholar 

  29. Stecker JF Jr, Gillenwater JY. Experimental partial ureteral obstruction. I. Alteration in renal function. Invest Urol. 1971;8(4):377-385

    PubMed  CAS  Google Scholar 

  30. Wilson DR. Micropuncture study of chronic obstructive nephropathy before and after release of obstruction. Kidney Int. 1972;2(3):119-130

    Article  PubMed  CAS  Google Scholar 

  31. Tanagho EA. Surgically induced partial urinary obstruction in the fetal lamb. 3. Ureteral obstruction. Invest Urol. 1972;10(1):35-52

    PubMed  CAS  Google Scholar 

  32. Olsen L. Renal function in experimental chronic hydronephrosis. III. Glomerular and tubular functions in relation to renal pelvic volume. Scand J Urol Nephrol. 1976;(suppl 32):5-13

    PubMed  Google Scholar 

  33. Josephson S. Experimental obstructive hydronephrosis in newborn rats III. Long-term effects on renal function. J Urol. 1983;129(2):396-400

    PubMed  CAS  Google Scholar 

  34. Boron WF. Acid-base transport by the renal proximal tubule. J Am Soc Nephrol. 2006;17(9):2368-2382

    Article  PubMed  CAS  Google Scholar 

  35. Misseri R et al. Inflammatory mediators and growth factors in obstructive renal injury. J Surg Res. 2004;119(2): 149-159

    Article  PubMed  CAS  Google Scholar 

  36. Sean Eardley K, Cockwell P. Macrophages and progressive tubulointerstitial disease. Kidney Int. 2005;68(2): 437-455

    Article  PubMed  Google Scholar 

  37. Wada T et al. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol. 2004;15(4):940-948

    Article  PubMed  CAS  Google Scholar 

  38. Pittock ST et al. MCP-1 is up-regulated in unstressed and stressed HO-1 knockout mice: pathophysiologic correlates. Kidney Int. 2005;68(2):611-622

    Article  PubMed  CAS  Google Scholar 

  39. Esteban V et al. Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol. 2004;15(6):1514-1529

    Article  PubMed  CAS  Google Scholar 

  40. Inazaki K et al. Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int. 2004;66(2):597-604

    Article  PubMed  CAS  Google Scholar 

  41. Chevalier RL. Molecular and cellular pathophysiology of obstructive nephropathy. Pediatr Nephrol. 1999;13(7):612-619

    Article  PubMed  CAS  Google Scholar 

  42. McVary KT, Maizels M. Urinary obstruction reduces glomerulogenesis in the developing kidney: a model in the rabbit. J Urol. 1989;142(2 pt 2):646-651. discussion 667-8

    PubMed  CAS  Google Scholar 

  43. Peters CA et al. The response of the fetal kidney to obstruction. J Urol. 1992;148(2 pt 2):503-509

    PubMed  CAS  Google Scholar 

  44. Chevalier RL et al. Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int. 1999;55(3):793-807

    Article  PubMed  CAS  Google Scholar 

  45. Okuda S et al. Influence of age on deterioration of the remnant kidney in uninephrectomized rats. Clin Sci Lond. 1987;72(5):571-576

    PubMed  CAS  Google Scholar 

  46. O’Donnell MP et al. Age is a determinant of the glomerular morphologic and functional responses to chronic nephron loss. J Lab Clin Med. 1985;106(3):308-313

    PubMed  Google Scholar 

  47. Quinlan MR et al. Exploring mechanisms involved in renal tubular sensing of mechanical stretch following ureteric obstruction. Am J Physiol Ren Physiol. 2008; 295(1):F1-F11

    Article  CAS  Google Scholar 

  48. Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE. 2002;2002(119):PE6

    Article  PubMed  Google Scholar 

  49. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260(5111):1124-1127

    Article  PubMed  CAS  Google Scholar 

  50. Klahr S, Ishidoya S, Morrissey J. Role of angiotensin II in the tubulointerstitial fibrosis of obstructive nephropathy. Am J Kidney Dis. 1995;26(1):141-146

    Article  PubMed  CAS  Google Scholar 

  51. Chertin B et al. Conservative treatment of ureteropelvic junction obstruction in children with antenatal diagnosis of hydronephrosis: lessons learned after 16 years of follow-up. Eur Urol. 2006;49(4):734-738

    Article  PubMed  Google Scholar 

  52. Rosen S, Heyman SN. Difficulties in understanding human “acute tubular necrosis”: limited data and flawed animal models. Kidney Int. 2001;60(4):1220-1224

    Article  PubMed  CAS  Google Scholar 

  53. Lieberthal W, Nigam SK. Acute renal failure II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Ren Physiol. 2000;278 (1):F1-F12

    CAS  Google Scholar 

  54. Mizuguchi Y et al. A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Am J Physiol Ren Physiol. 2008;295(5):F1545-F1553

    Article  CAS  Google Scholar 

  55. Lee RS et al. Temporal variations of the postnatal rat urinary proteome as a reflection of systemic maturation. Proteomics. 2008;8(5):1097-112

    Article  PubMed  CAS  Google Scholar 

  56. Decramer S et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med. 2006;12(4):398-400

    Article  PubMed  CAS  Google Scholar 

  57. Mostbeck GH, Zontsich T, Turetschek K. Ultrasound of the kidney: obstruction and medical diseases. Eur Radiol. 2001;11(10):1878-1889

    Article  PubMed  CAS  Google Scholar 

  58. Shokeir AA. The diagnosis of upper urinary tract obstruction. BJU Int. 1999;83(8):893-900. quiz 900–1

    Article  PubMed  CAS  Google Scholar 

  59. Platt JF, Rubin JM, Ellis JH. Distinction between obstructive and nonobstructive pyelocaliectasis with duplex Doppler sonography. Am J Roentgenol. 1989;153(5):997-1000

    CAS  Google Scholar 

  60. Shokeir AA et al. Renal doppler ultrasound in children with obstructive uropathy: Effect of intravenous normal saline fluid load and furosemide. J Urol. 1996;156(4):1455-1458

    Article  PubMed  CAS  Google Scholar 

  61. Whitaker RH. Diagnosis of obstruction in dilated ureters. Ann R Coll Surg Engl. 1973;53(3):153-166

    PubMed  CAS  Google Scholar 

  62. Sperling H et al. The Whitaker test, a useful tool in renal grafts? Urology. 2000;56(1):49-52

    Article  PubMed  CAS  Google Scholar 

  63. Dubovsky EV, Russell CD. Advances in radionuclide evaluation of urinary tract obstruction. Abdom Imaging. 1998;23(1):17-26

    Article  PubMed  CAS  Google Scholar 

  64. English PJ et al. Modified method of diuresis renography for the assessment of equivocal pelviureteric junction obstruction. Br J Urol. 1987;59(1):10-14

    Article  PubMed  CAS  Google Scholar 

  65. Upsdell SM, Testa HJ, Lawson RS. The F-15 diuresis renogram in suspected obstruction of the upper urinary tract. Br J Urol. 1992;69(2):126-131

    Article  PubMed  CAS  Google Scholar 

  66. Pais VM, Strandhoy JW, Assimos DG. Pathophysiology of urinary tract obstruction. In: Wein AJ et al., eds. Campbell-Walsh Urology. Philadelphia, PA: Saunders; 2006

    Google Scholar 

  67. Smith RC et al. Diagnosis of acute flank pain: value of unenhanced helical CT. Am J Roentgenol. 1996;166(1):97-101

    CAS  Google Scholar 

  68. Gentle DL et al. Protease inhibitor-induced urolithiasis. Urology. 1997;50(4):508-511

    Article  PubMed  CAS  Google Scholar 

  69. El-Nahas AR et al. Role of multiphasic helical computed tomography in planning surgical treatment for pelvi-ureteric junction obstruction. BJU Int. 2004;94(4):582-587

    Article  PubMed  Google Scholar 

  70. Lawler LP et al. Adult ureteropelvic junction obstruction: insights with three-dimensional multi-detector row CT. Radiographics. 2005;25(1):121-134

    Article  PubMed  Google Scholar 

  71. Leyendecker JR, Barnes CE, Zagoria RJ. MR urography: techniques and clinical applications. Radiographics. 2008;28(1):23-46. discussion 46–7

    Article  PubMed  Google Scholar 

  72. Karabacakoglu A et al. Diagnostic value of diuretic-enhanced excretory MR urography in patients with obstructive uropathy. Eur J Radiol. 2004;52(3):320-327

    Article  PubMed  Google Scholar 

  73. Lefort C et al. Dynamic MR urography in urinary tract obstruction: implementation and preliminary results. Abdom Imaging. 2006;31(2):232-240

    Article  PubMed  CAS  Google Scholar 

  74. Farnham SB et al. Pediatric urological causes of hypertension. J Urol. 2005;173(3):697-704

    Article  PubMed  Google Scholar 

  75. Kinn AC. Ureteropelvic junction obstruction: long-term followup of adults with and without surgical treatment. J Urol. 2000;164(3 pt 1):652-656

    PubMed  CAS  Google Scholar 

  76. Parkhouse HF et al. Long-term outcome of boys with posterior urethral valves. Br J Urol. 1988;62(1):59-62

    Article  PubMed  CAS  Google Scholar 

  77. Vaughan ED Jr, Gillenwater JY. Diagnosis, characterization and management of post-obstructive diuresis. J Urol. 1973;109(2):286-292

    PubMed  Google Scholar 

  78. Jones DA, George NJ, O’Reilly PH. Postobstructive renal function. Semin Urol. 1987;5(3):176-190

    PubMed  CAS  Google Scholar 

  79. Nyman MA, Schwenk NM, Silverstein MD. Management of urinary retention: rapid versus gradual decompression and risk of complications. Mayo Clin Proc. 1997;72(10):951-956

    Article  PubMed  CAS  Google Scholar 

  80. Schlossberg SM, Vaughan ED Jr. The mechanism of unilateral post-obstructive diuresis. J Urol. 1984;131(3): 534-536

    PubMed  CAS  Google Scholar 

  81. Kim SW et al. Diminished renal expression of aquaporin water channels in rats with experimental bilateral ureteral obstruction. J Am Soc Nephrol. 2001;12(10): 2019-2028

    PubMed  CAS  Google Scholar 

  82. Frokiaer J et al. Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol. 1996;270(4 pt 2): F657-F668

    PubMed  CAS  Google Scholar 

  83. Kim SW et al. Diminished expression of sodium transporters in the ureteral obstructed kidney in rats. Nephron Exp Nephrol. 2004;96(3):e67-76

    Article  PubMed  CAS  Google Scholar 

  84. Norregaard R et al. COX-2 activity transiently contributes to increased water and NaCl excretion in the polyuric phase after release of ureteral obstruction. Am J Physiol Ren Physiol. 2007;292(5):F1322-1333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Cannon, G.M., Lee, R.S. (2011). Pathophysiology of Renal Obstruction. In: Chapple, C., Steers, W. (eds) Practical Urology: Essential Principles and Practice. Springer Specialist Surgery Series. Springer, London. https://doi.org/10.1007/978-1-84882-034-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-034-0_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-033-3

  • Online ISBN: 978-1-84882-034-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics