Molecular Biology for Urologists

  • Peter E. Clark
Part of the Springer Specialist Surgery Series book series (SPECIALIST)


The last several decades have seen an explosion of science and technology across all walks of life, and medicine is no exception. Improvements in engineering, optics, laser technology, pharmacology, and molecular biology have radically changed how we take care of patients on a daily basis. The development of the “Targeted Therapies” for advanced renal cell carcinoma (RCC) is just an one example of how discoveries in the basic biology of a disease have contributed to the development of novel therapeutics, thus markedly altering the standard of care for this disease. The field of urology has traditionally been at the forefront of these discoveries, as evidenced by the Nobel Prize winning work of Huggins and Hodges during the last century. As we move through the twenty-first century, a fundamental understanding of molecular biology will be increasingly important to understand the basis for the therapies we prescribe. The purpose of this chapter is to introduce the practicing urologist to the basics of molecular biology and its relevance to our field.


Vascular Endothelial Growth Factor Renal Cell Carcinoma Metastatic Renal Cell Carcinoma Clear Cell Renal Cell Carcinoma Advanced Renal Cell Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68:820PubMedCrossRefGoogle Scholar
  2. 2.
    Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci USA. 1993;90:10914PubMedCrossRefGoogle Scholar
  3. 3.
    Gessler M, Poustka A, Cavenee W, et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature. 1990;343:774PubMedCrossRefGoogle Scholar
  4. 4.
    Cavenee WK, Hansen MF, Nordenskjold M, et al. Genetic origin of mutations predisposing to retinoblastoma. Science. 1985;228:501PubMedCrossRefGoogle Scholar
  5. 5.
    Fung YK, Murphree AL, T’Ang A, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987;236:1657PubMedCrossRefGoogle Scholar
  6. 6.
    Xu GF, O’Connell P, Viskochil D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell. 1990;62:599PubMedCrossRefGoogle Scholar
  7. 7.
    Kinzler KW, Vogelstein B. Cancer. A gene for neurofibromatosis 2. Nature. 1993;363:495PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen AJ, Li FP, Berg S, et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979;301:592PubMedCrossRefGoogle Scholar
  9. 9.
    Kovacs G, Brusa P, De Riese W. Tissue-specific expression of a constitutional 3;6 translocation: development of multiple bilateral renal-cell carcinomas. Int J Cancer. 1989;43:422PubMedCrossRefGoogle Scholar
  10. 10.
    Pathak S, Strong LC, Ferrell RE, et al. Familial renal cell carcinoma with a 3;11 chromosome translocation limited to tumor cells. Science. 1982;217:939PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshida MA, Ohyashiki K, Ochi H, et al. Cytogenetic studies of tumor tissue from patients with nonfamilial renal cell carcinoma. Cancer Res. 1986;46:2139PubMedGoogle Scholar
  12. 12.
    de Jong B, Oosterhuis JW, Idenburg VJ, et al. Cytogenetics of 12 cases of renal adenocarcinoma. Cancer Genet Cytogenet. 1988;30:53PubMedCrossRefGoogle Scholar
  13. 13.
    Presti JC Jr, Rao PH, Chen Q, et al. Histopathological, cytogenetic, and molecular characterization of renal cortical tumors. Cancer Res. 1991;51:1544PubMedGoogle Scholar
  14. 14.
    Kovacs G, Frisch S. Clonal chromosome abnormalities in tumor cells from patients with sporadic renal cell carcinomas. Cancer Res. 1989;49:651PubMedGoogle Scholar
  15. 15.
    Szucs S, Muller-Brechlin R, DeRiese W, et al. Deletion 3p: the only chromosome loss in a primary renal cell carcinoma. Cancer Genet Cytogenet. 1987;26:369PubMedCrossRefGoogle Scholar
  16. 16.
    Zbar B, Brauch H, Talmadge C, et al. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature. 1987;327:721PubMedCrossRefGoogle Scholar
  17. 17.
    Anglard P, Tory K, Brauch H, et al. Molecular analysis of genetic changes in the origin and development of renal cell carcinoma. Cancer Res. 1991;51:1071PubMedGoogle Scholar
  18. 18.
    Seizinger BR, Rouleau GA, Ozelius LJ, et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature. 1988;332:268PubMedCrossRefGoogle Scholar
  19. 19.
    Lerman MI, Latif F, Glenn GM, et al. Isolation and regional localization of a large collection (2, 000) of single-copy DNA fragments on human chromosome 3 for mapping and cloning tumor suppressor genes. Hum Genet. 1991;86:567PubMedCrossRefGoogle Scholar
  20. 20.
    Hosoe S, Brauch H, Latif F, et al. Localization of the von Hippel-Lindau disease gene to a small region of chromosome 3. Genomics. 1990;8:634PubMedCrossRefGoogle Scholar
  21. 21.
    Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260:1317PubMedCrossRefGoogle Scholar
  22. 22.
    Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7:85PubMedCrossRefGoogle Scholar
  23. 23.
    Whaley JM, Naglich J, Gelbert L, et al. Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. Am J Hum Genet. 1994; 55:1092PubMedGoogle Scholar
  24. 24.
    Shuin T, Kondo K, Torigoe S, et al. Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res. 1994;54:2852PubMedGoogle Scholar
  25. 25.
    Foster K, Prowse A, van den Berg A, et al. Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet. 1994;3:2169PubMedCrossRefGoogle Scholar
  26. 26.
    Crossey PA, Richards FM, Foster K, et al. Identification of intragenic mutations in the von Hippel-Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum Mol Genet. 1994;3:1303PubMedCrossRefGoogle Scholar
  27. 27.
    Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 1994;91:9700PubMedCrossRefGoogle Scholar
  28. 28.
    Gnarra JR, Duan DR, Weng Y, et al. Molecular cloning of the von Hippel-Lindau tumor suppressor gene and its role in renal carcinoma. Biochim Biophys Acta. 1996;1242:201PubMedGoogle Scholar
  29. 29.
    Linehan WM, Lerman MI, Zbar B. Identification of the von Hippel-Lindau (VHL) gene. Its role in renal cancer. JAMA. 1995;273:564PubMedCrossRefGoogle Scholar
  30. 30.
    Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683PubMedCrossRefGoogle Scholar
  31. 31.
    Ballestar E, Esteller M. Epigenetic gene regulation in cancer. Adv Genet. 2008;61:247PubMedCrossRefGoogle Scholar
  32. 32.
    Dressler GR. Epigenetics, development, and the kidney. J Am Soc Nephrol. 2008;19:2060PubMedCrossRefGoogle Scholar
  33. 33.
    Gnarra JR, Zhou S, Merrill MJ, et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci USA. 1996;93:10589PubMedCrossRefGoogle Scholar
  34. 34.
    Iliopoulos O, Levy AP, Jiang C, et al. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA. 1996;93:10595PubMedCrossRefGoogle Scholar
  35. 35.
    Siemeister G, Weindel K, Mohrs K, et al. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res. 1996;56:2299PubMedGoogle Scholar
  36. 36.
    Haase VH. Hypoxia-inducible factors in the kidney. Am J Physiol Ren Physiol. 2006;291:F271CrossRefGoogle Scholar
  37. 37.
    Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170:2163PubMedCrossRefGoogle Scholar
  38. 38.
    Iliopoulos O. Molecular biology of renal cell cancer and the identification of therapeutic targets. J Clin Oncol. 2006;24:5593PubMedCrossRefGoogle Scholar
  39. 39.
    Stadler W. Chromosomes, hypoxia, angiogenesis, and trial design: a brief history of renal cancer drug development. Clin Cancer Res. 2007;13:1630PubMedCrossRefGoogle Scholar
  40. 40.
    Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 1993;90:4304PubMedCrossRefGoogle Scholar
  41. 41.
    Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271PubMedCrossRefGoogle Scholar
  42. 42.
    Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272:22642PubMedCrossRefGoogle Scholar
  43. 43.
    Cockman ME, Masson N, Mole DR, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2000;275:25733PubMedCrossRefGoogle Scholar
  44. 44.
    Tanimoto K, Makino Y, Pereira T, et al. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000;19:4298PubMedCrossRefGoogle Scholar
  45. 45.
    Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2:423PubMedCrossRefGoogle Scholar
  46. 46.
    Kamura T, Sato S, Iwai K, et al. Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA. 2000;97:10430PubMedCrossRefGoogle Scholar
  47. 47.
    Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992; 267:10931PubMedGoogle Scholar
  48. 48.
    Bard RH, Mydlo JH, Freed SZ. Detection of tumor angiogenesis factor in adenocarcinoma of kidney. Urology. 1986;27:447PubMedCrossRefGoogle Scholar
  49. 49.
    Rini BI, Small EJ. Biology and clinical development of vascular endothelial growth factor-targeted therapy in renal cell carcinoma. J Clin Oncol. 2005;23:1028PubMedCrossRefGoogle Scholar
  50. 50.
    Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. 2006;580:2879PubMedCrossRefGoogle Scholar
  51. 51.
    Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011PubMedCrossRefGoogle Scholar
  52. 52.
    Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(Suppl 3):4PubMedCrossRefGoogle Scholar
  53. 53.
    Donovan EA, Kummar S. Targeting VEGF in cancer therapy. Curr Probl Cancer. 2006;30:7PubMedCrossRefGoogle Scholar
  54. 54.
    Lane BR, Rini BI, Novick AC, et al. Targeted molecular therapy for renal cell carcinoma. Urology. 2007;69:3PubMedCrossRefGoogle Scholar
  55. 55.
    Cho D, Signoretti S, Regan M, et al. The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res. 2007;13:758sCrossRefGoogle Scholar
  56. 56.
    Bukowski RM. Cytokine therapy for metastatic renal cell carcinoma. Semin Urol Oncol. 2001;19:148PubMedGoogle Scholar
  57. 57.
    Heinzer H, Huland E, Huland H. Systemic chemotherapy and chemoimmunotherapy for metastatic renal cell cancer. World J Urol. 2001;19:111PubMedCrossRefGoogle Scholar
  58. 58.
    Pantuck AJ, Zisman A, Belldegrun A. Biology of renal cell carcinoma: changing concepts in classification and staging. Semin Urol Oncol. 2001;19:72PubMedGoogle Scholar
  59. 59.
    Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427PubMedCrossRefGoogle Scholar
  60. 60.
    Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103PubMedCrossRefGoogle Scholar
  61. 61.
    Kuenen BC, Giaccone G, Ruijter R, et al. Dose-finding study of the multitargeted tyrosine kinase inhibitor SU6668 in patients with advanced malignancies. Clin Cancer Res. 2005;11:6240PubMedCrossRefGoogle Scholar
  62. 62.
    Kuenen BC, Tabernero J, Baselga J, et al. Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with advanced renal cell carcinoma, melanoma, and soft tissue sarcoma. Clin Cancer Res. 2003;9:1648PubMedGoogle Scholar
  63. 63.
    Shaheen PE, Bukowski RM. Targeted therapy for renal cell carcinoma: a new therapeutic paradigm. Cancer Invest. 2006;24:640PubMedCrossRefGoogle Scholar
  64. 64.
    Amato RJ. Renal cell carcinoma: review of novel single-agent therapeutics and combination regimens. Ann Oncol. 2005;16:7PubMedCrossRefGoogle Scholar
  65. 65.
    Fabian MA, Biggs WH 3rd, Treiber DK, et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol. 2005;23:329PubMedCrossRefGoogle Scholar
  66. 66.
    Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9:327PubMedGoogle Scholar
  67. 67.
    Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24:25PubMedCrossRefGoogle Scholar
  68. 68.
    Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115PubMedCrossRefGoogle Scholar
  69. 69.
    Motzer RJ, Michaelson MD, Redman BG, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:16PubMedCrossRefGoogle Scholar
  70. 70.
    Motzer RJ, Rini BI, Bukowski RM, et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA. 2006;295:2516PubMedCrossRefGoogle Scholar
  71. 71.
    Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5:835PubMedCrossRefGoogle Scholar
  72. 72.
    Rosner GL, Stadler W, Ratain MJ. Randomized discontinuation design: application to cytostatic antineoplastic agents. J Clin Oncol. 2002;20:4478PubMedCrossRefGoogle Scholar
  73. 73.
    Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125PubMedCrossRefGoogle Scholar
  74. 74.
    Boulay A, Zumstein-Mecker S, Stephan C, et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res. 2004; 64:252PubMedCrossRefGoogle Scholar
  75. 75.
    Reddy GK, Mughal TI, Rini BI. Current data with mammalian target of rapamycin inhibitors in advanced-stage renal cell carcinoma. Clin Genitourin Cancer. 2006; 5:110PubMedCrossRefGoogle Scholar
  76. 76.
    Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004;22:909PubMedCrossRefGoogle Scholar
  77. 77.
    Smith JW, Ko Y-J, Dutcher J, et al. Update of a phase I study of intravenous CCI-779 given in combination with interferon-a to patients with advanced renal cell carcinoma. Proc Am Soc Clin Onc. 2004;23: 4513AGoogle Scholar
  78. 78.
    Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271PubMedCrossRefGoogle Scholar
  79. 79.
    Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372:449PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Peter E. Clark
    • 1
  1. 1.Department of Urologic SurgeryVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations