Metabolic Evaluation and Medical Management of Stone Disease

  • Dorit E. Zilberman
  • Michael N. Ferrandino
  • Glenn M. Preminger
Part of the Springer Specialist Surgery Series book series (SPECIALIST)


medical problem, often causing significant patient morbidity. The lifetime risk for stone formation has been reported to be as high as 12% for men and 6% for women.1 However, the rate of female stone formation is insidiously increasing, probably as a result of diet changes and lifestyle associated risk factors such as obesity.2 Recent studies suggest the current male to female ratio of stone formation is now 1.3:1 (M:F).2,3


Uric Acid Primary Hyperparathyroidism Stone Formation Calcium Oxalate Stone Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Curhan GC. Epidemiology of stone disease. Urol Clin North Am. 2007;34(3):287-293PubMedCrossRefGoogle Scholar
  2. 2.
    Scales CD Jr, Curtis LH, Norris RD, et al. Changing gender prevalence of stone disease. J Urol. 2007;177(3):979-982PubMedCrossRefGoogle Scholar
  3. 3.
    Pearle MS, Calhoun EA, Curhan GC. Urologic diseases in America project: urolithiasis. J Urol. 2005;173(3):848-857PubMedCrossRefGoogle Scholar
  4. 4.
    Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63(5):1817-1823PubMedCrossRefGoogle Scholar
  5. 5.
    Yoshida O, Terai A, Ohkawa T, Okada Y. National trend of the incidence of urolithiasis in Japan from 1965 to 1995. Kidney Int. 1999;56(5):1899-1904PubMedCrossRefGoogle Scholar
  6. 6.
    Hesse A, Brandle E, Wilbert D, Kohrmann KU, Alken P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol. 2003;44(6):709-713PubMedCrossRefGoogle Scholar
  7. 7.
    Brikowski TH, Lotan Y, Pearle MS. Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci USA. 2008;105(28):9841-9846PubMedCrossRefGoogle Scholar
  8. 8.
    Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006;367(9507):333-344PubMedCrossRefGoogle Scholar
  9. 9.
    Nemoy NJ, Staney TA. Surgical, bacteriological, and biochemical management of “infection stones”. JAMA. 1971;215(9):1470-1476PubMedCrossRefGoogle Scholar
  10. 10.
    Healy KA, Ogan K. Pathophysiology and management of infectious staghorn calculi. Urol Clin North Am. 2007;34(3):363-374PubMedCrossRefGoogle Scholar
  11. 11.
    Thier SO, Segal S, Fox M, Blair A, Rosenberg LE. Cystinuria: defective intestinal transport of dibasic amino acids and cystine. J Clin Invest. 1965;44:442-448PubMedCrossRefGoogle Scholar
  12. 12.
    Pak CY, Fuller CJ. Assessment of cystine solubility in urine and of heterogeneous nucleation. J Urol. 1983; 129(5):1066-1070PubMedGoogle Scholar
  13. 13.
    Sakhaee K, Poindexter JR, Pak CY. The spectrum of metabolic abnormalities in patients with cystine nephrolithiasis. J Urol. 1989;141(4):819-821PubMedGoogle Scholar
  14. 14.
    Uribarri J, Oh MS, Carroll HJ. The first kidney stone. Ann Intern Med. 1989;111(12):1006-1009PubMedGoogle Scholar
  15. 15.
    Ljunghall S, Danielson BG. A prospective study of renal stone recurrences. Br J Urol. 1984;56(2):122-124PubMedCrossRefGoogle Scholar
  16. 16.
    Ljunghall S. Incidence of upper urinary tract stones. Miner Electrolyte Metab. 1987;13(4):220-227PubMedGoogle Scholar
  17. 17.
    Delvecchio FC, Preminger GM. Medical management of stone disease. Curr Opin Urol. 2003;13(3):229-233PubMedCrossRefGoogle Scholar
  18. 18.
    Chandhoke PS. Evaluation of the recurrent stone former. Urol Clin North Am. 2007;34(3):315-322PubMedCrossRefGoogle Scholar
  19. 19.
    Chandhoke PS. When is medical prophylaxis cost-effective for recurrent calcium stones? J Urol. 2002;168(3):937-940PubMedCrossRefGoogle Scholar
  20. 20.
    Lotan Y, Cadeddu JA, Pearle MS. International comparison of cost effectiveness of medical management strategies for nephrolithiasis. Urol Res. June 2005;33(3):223-230PubMedCrossRefGoogle Scholar
  21. 21.
    Hosking DH, Erickson SB, Van den Berg CJ, Wilson DM, Smith LH. The stone clinic effect in patients with idiopathic calcium urolithiasis. J Urol. 1983;130(6):1115-1118PubMedGoogle Scholar
  22. 22.
    Pak CY. Should patients with single renal stone occurrence undergo diagnostic evaluation? J Urol. 1982; 127(5):855-858PubMedGoogle Scholar
  23. 23.
    Coe FL, Keck J, Norton ER. The natural history of calcium urolithiasis. JAMA. 1977;238(14):1519-1523PubMedCrossRefGoogle Scholar
  24. 24.
    Pietrow PK, Preminger GM. Evaluation and medical management of urinary lithiasis. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, eds. Campbell-Walsh Urology. 9th ed. Philadelphia: Sounders Elsevier; 2007:1409Google Scholar
  25. 25.
    Kourambas J, Aslan P, Teh CL, Mathias BJ, Preminger GM. Role of stone analysis in metabolic evaluation and medical treatment of nephrolithiasis. J Endourol. 2001;15(2):181-186PubMedCrossRefGoogle Scholar
  26. 26.
    Bartosh SM. Medical management of pediatric stone disease. Urol Clin North Am. 2004;31(3):575-587. x–xiPubMedCrossRefGoogle Scholar
  27. 27.
    Lingeman JE, Siegel YI, Steele B. Metabolic evaluation of infected renal lithiasis: clinical relevance. J Endourol. 1995;9(1):51-54PubMedCrossRefGoogle Scholar
  28. 28.
    Pak CY, Poindexter JR, Adams-Huet B, Pearle MS. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med. 2003;115(1):26-32PubMedCrossRefGoogle Scholar
  29. 29.
    Reddy ST, Wang CY, Sakhaee K, Brinkley L, Pak CY. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium meta-bolism. Am J Kidney Dis. 2002;40(2):265-274PubMedCrossRefGoogle Scholar
  30. 30.
    Yilmaz S, Sindel T, Arslan G, et al. Renal colic: comparison of spiral CT, US and IVU in the detection of ureteral calculi. Eur Radiol. 1998;8(2):212-217.PubMedCrossRefGoogle Scholar
  31. 31.
    Teichman JM. Clinical practice. Acute renal colic from ureteral calculus. N Engl J Med. 2004;350(7):684-693PubMedCrossRefGoogle Scholar
  32. 32.
    Bellin MF, Renard-Penna R, Conort P, et al. Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol. 2004;14(11):2134-2140PubMedCrossRefGoogle Scholar
  33. 33.
    Deveci S, Coskun M, Tekin MI, Peskircioglu L, Tarhan NC, Ozkardes H. Spiral computed tomography: role in determination of chemical compositions of pure and mixed urinary stones – an in vitro study. Urology. 2004;64(2):237-240PubMedCrossRefGoogle Scholar
  34. 34.
    Mitcheson HD, Zamenhof RG, Bankoff MS, Prien EL. Determination of the chemical composition of urinary calculi by computerized tomography. J Urol. 1983;130(4):814-819PubMedGoogle Scholar
  35. 35.
    Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol. 1998;159(3):673-675PubMedCrossRefGoogle Scholar
  36. 36.
    Motley G, Dalrymple N, Keesling C, Fischer J, Harmon W. Hounsfield unit density in the determination of urinary stone composition. Urology. 2001;58(2):170-173PubMedCrossRefGoogle Scholar
  37. 37.
    Nakada SY, Hoff DG, Attai S, Heisey D, Blankenbaker D, Pozniak M. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000;55(6):816-819PubMedCrossRefGoogle Scholar
  38. 38.
    Zarse CA, McAteer JA, Tann M, et al. Helical computed tomography accurately reports urinary stone composition using attenuation values: in vitro verification using high-resolution micro-computed tom ography calibrated to fourier transform infrared microspectroscopy. Urology. 2004;63(5):828-833PubMedCrossRefGoogle Scholar
  39. 39.
    Graser A, Johnson TR, Bader M, et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol. 2008;43(2):112-119PubMedCrossRefGoogle Scholar
  40. 40.
    Seltzer MA, Low RK, McDonald M, Shami GS, Stoller ML. Dietary manipulation with lemonade to treat hypocitraturic calcium nephrolithiasis. J Urol. 1996;156(3):907-909PubMedCrossRefGoogle Scholar
  41. 41.
    Kang DE, Sur RL, Haleblian GE, Fitzsimons NJ, Borawski KM, Preminger GM. Long-term lemonade based dietary manipulation in patients with hypocitraturic nephrolithiasis. J Urol. 2007;177(4):1358-1362. discussion 1362; quiz 1591PubMedCrossRefGoogle Scholar
  42. 42.
    Haleblian GE, Leitao VA, Pierre SA, et al. Assessment of citrate concentrations in citrus fruit-based juices and beverages: implications for management of hypocit-raturic nephrolithiasis. J Endourol. 2008;22(6):1359-1366PubMedCrossRefGoogle Scholar
  43. 43.
    Penniston KL, Nakada SY, Holmes RP, Assimos DG. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J Endourol. 2008;22(3):567-570PubMedCrossRefGoogle Scholar
  44. 44.
    Goldfarb DS, Asplin JR. Effect of grapefruit juice on urinary lithogenicity. J Urol. 2001;166(1):263-267PubMedCrossRefGoogle Scholar
  45. 45.
    Ameer B, Weintraub RA. Drug interactions with grapefruit juice. Clin Pharmacokinet. 1997;33(2):103-121PubMedCrossRefGoogle Scholar
  46. 46.
    Sakhaee K, Harvey JA, Padalino PK, Whitson P, Pak CY. The potential role of salt abuse on the risk for kid-ney stone formation. J Urol. 1993;150 (2 Pt 1):310-312PubMedGoogle Scholar
  47. 47.
    Preminger GM, Sakhaee K, Pak CY. Alkali action on the urinary crystallization of calcium salts: contrasting responses to sodium citrate and potassium citrate. J Urol. 1988;139(2):240-242PubMedGoogle Scholar
  48. 48.
    Pak CY, Barilla DE, Holt K, Brinkley L, Tolentino R, Zerwekh JE. Effect of oral purine load and allopurinol on the crystallization of calcium salts in urine of patients with hyperuricosuric calcium urolithiasis. Am J Med. 1978;65(4):593-599PubMedCrossRefGoogle Scholar
  49. 49.
    Fellstrom B, Danielson BG, Karlstrom B, Lithell H, Ljunghall S, Vessby B. The influence of a high dietary intake of purine-rich animal protein on urinary urate excretion and supersaturation in renal stone disease. Clin Sci (Lond). 1983;64(4):399-405Google Scholar
  50. 50.
    Breslau NA, Brinkley L, Hill KD, Pak CY. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol Metab. 1988;66(1):140-146PubMedCrossRefGoogle Scholar
  51. 51.
    Robertson WG, Peacock M, Hodgkinson A. Dietary changes and the incidence of urinary calculi in the U.K. between 1958 and 1976. J Chron Dis. 1979;32(6):469-476PubMedCrossRefGoogle Scholar
  52. 52.
    Robertson WG, Peacock M, Marshall DH. Prevalence of urinary stone disease in vegetarians. Eur Urol. 1982; 8(6):334-339PubMedGoogle Scholar
  53. 53.
    Liatsikos EN, Barbalias GA. The influence of a low protein diet in idiopathic hypercalciuria. Int Urol Nephrol. 1999;31(3):271-276PubMedCrossRefGoogle Scholar
  54. 54.
    Giannini S, Nobile M, Sartori L, et al. Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Am J Clin Nutr. 1999;69(2):267-271PubMedGoogle Scholar
  55. 55.
    Holmes RP, Assimos DG. The impact of dietary oxalate on kidney stone formation. Urol Res. 2004;32(5):311-316PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Dorit E. Zilberman
    • 1
  • Michael N. Ferrandino
    • 2
  • Glenn M. Preminger
    • 3
  1. 1.Department of Surgery/UrologyDuke University Medical CenterDurhamUSA
  2. 2.Division of Urologic Surgery, Duke Comprehensive Kidney Stone CenterDuke University Medical CenterDurhamUSA
  3. 3.Division of Urologic SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations