Skip to main content

Multiple Myeloma and Other Hematological Malignancies of Bone

  • Chapter
  • First Online:
Bone and Cancer

Part of the book series: Topics in Bone Biology ((TBB,volume 5))

  • 984 Accesses

Abstract

Multiple Myeloma (MM) is a hematologic malignancy characterized by neoplastic clonal proliferation of plasma cells typically resulting in the presence of a monoclonal immunoglobulin (Ig) present in the blood and/or urine. MM is responsible for 1% of malignant diseases, and comprises 10% of all hematologic malignancies, making it the second most common hematologic malignancy in adults, second to only Non-Hodgkin's lymphoma. The estimated annual incidence of MM is approximately 4 per 100,000 in Caucasians and 8 per 100,000 in African-Americans with a projected 19,900 new cases to be diagnosed in 2007 in the United States and approximately 10,790 deaths due to myeloma to occur [46]. The incidence is lower in the Asian population. The incidence of MM increases with age with median age at diagnosis being 68 years, with a greater incidence of the disease in males as compare to females.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, Wakatsuki S, Kosaka M, Kido S, Inoue D, Matsumoto T (2002) Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 100:2195–2202.

    PubMed  CAS  Google Scholar 

  2. Aisenberg AC, Kaplan MM, Rieder SV, Goldman JM (1970) Serum alkaline phosphatase at onset of Hodgkin's disease. Cancer 26:318–326.

    Article  PubMed  CAS  Google Scholar 

  3. Bataille R, Boccadoro M, Klein B, Durie BG, Pileri A (1992) C-Reactive Protein B-2 microglobulin produce a simple and powerful myeloma staging system. Blood 80:733–737.

    PubMed  CAS  Google Scholar 

  4. Bataille R, Chappard D, Marcelli C, Dessauw P, Sany J, Baldet P, Alexandre C (1989) Mechanisms of bone destruction in multiple myeloma: The importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol 7:1909–1914.

    PubMed  CAS  Google Scholar 

  5. Bataille R, Grenier J, Sany J (1984) Beta-2-microglobulin in myeloma: optimal use for staging, prognosis, and treatment--a prospective study of 160 patients. Blood 63:468–476.

    PubMed  CAS  Google Scholar 

  6. Batson O (1940) The function of the vertebral veins and their role in the spread of metastases. Ann Surg 112:138–149.

    Article  PubMed  CAS  Google Scholar 

  7. Beachley MD, Lau BP, King ER (1972) Bone involvement in Hodgkin's disease. Am J Roentgenol 114:559–563.

    CAS  Google Scholar 

  8. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs MJ, Blacklock HA, Bell R, Simeone J, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 334:488–493.

    Article  PubMed  CAS  Google Scholar 

  9. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs M, Blacklock H, Bell R, Simeone JF, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1998) Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 16:593–602.

    PubMed  CAS  Google Scholar 

  10. Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, Holloway D, Peterson MC, Bekker PJ (2006) A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 12:1221–1228.

    Article  PubMed  CAS  Google Scholar 

  11. Borg MF, Chowdhury AD, Bhoopal S, Benjamin CS (1993) Bone involvement in Hodgkin's disease. Australas Radiol 37:63–66.

    Article  PubMed  CAS  Google Scholar 

  12. Bosch A, Frias Z (1988) Radiotherapy in the treatment of Multiple Myeloma. Int J Radiat Oncol Biol Phy 15:1363–1369.

    Article  CAS  Google Scholar 

  13. Braunstein EM, White SJ (1980) Non-Hodgkin Lymphoma of Bone. Radiology 135:59–63.

    PubMed  CAS  Google Scholar 

  14. Callander NS, Roodman GD (2001) Myeloma bone disease. Semin Hematol 38:276–285.

    Article  PubMed  CAS  Google Scholar 

  15. Castellino RA, Goffinet OR, Blank N, Parker BR, Kaplan HS (1974) The role of radiography in the staging of non-Hodgkin’s lymphoma with laparotomy correlation. Radiology 110:329–338.

    PubMed  CAS  Google Scholar 

  16. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD, Alsina M (2000) Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 96:671–675.

    PubMed  CAS  Google Scholar 

  17. Choi SJ, Oba Y, Gazitt Y, Alsina M, Cruz J, Anderson J, Roodman GD (2001) Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest 108:1833–1841.

    PubMed  CAS  Google Scholar 

  18. Cohen HJ, Silberman HR, Tornyos K, Bartolucci AA (1984) Comparison of two long-term chemotherapy regimens, with or without agents to modify skeletal repair, in multiple myeloma. Blood 63:639–648.

    PubMed  CAS  Google Scholar 

  19. Daley-Yates, PT, Dodwell, DJ, Pongchaidecha, M, Coleman RE, Howell A (1991) The clearance and bioavailability of pamidronate in patients with breast cancer and bone metastases. Calcif Tissue Int 49:433–435.

    Article  PubMed  CAS  Google Scholar 

  20. Deramond H, Depriester C, Galibert P, Le Gars D (1998) Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 36:533–546.

    Article  PubMed  CAS  Google Scholar 

  21. Dimopoulos MA, Moulopoulos LA, Datseris I, Weber D, Delasalle K, Gika D, Alexanian R (2000) Imaging of myeloma bone disease—implications for staging, prognosis and follow-up. Acta Oncol 39:823–827.

    Article  PubMed  CAS  Google Scholar 

  22. Dispenzieri A, Gertz MA (2004) Treatment of POEMS syndrome. Curr Treat Options Oncol 5:249–257.

    Google Scholar 

  23. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754.

    Article  PubMed  CAS  Google Scholar 

  24. Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, Response to treatment, and survival. Cancer. 36:842–854.

    Article  PubMed  CAS  Google Scholar 

  25. Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S, Rizzoli V, Roodman GD, Giuliani N (2005) IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 106:1407–1414.

    Article  PubMed  CAS  Google Scholar 

  26. Ehrlich LA, Roodman GD (2005) The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev 208:252–266.

    Article  PubMed  CAS  Google Scholar 

  27. Firkin F, Seymour JF, Watson AM, Grill V, Martin TJ (1996) Parathyroid hormone-related protein in hypercalcaemia associated with haematological malignancy. Br J Haematol 94:486–492.

    Article  PubMed  CAS  Google Scholar 

  28. Franceschi RT, Xiao G (2003) Regulation of the osteoblast-specific transcription factor, RunX2: responsiveness to multisignal transduction pathways. J Cell Biochem 88:446–454.

    Article  PubMed  CAS  Google Scholar 

  29. Franczyk J, Samuels T, Rubenstein J, Srigley J, Morava-Protzner I (1989) Skeletal lymphoma. Can Assoc Radiol J 40:75–79.

    PubMed  CAS  Google Scholar 

  30. Fucilla IS, Hamman A (1961) Hodgkin's disease in bone. Radiology 77:53–59.

    PubMed  CAS  Google Scholar 

  31. Giuliani N, Bataille R, Mancini C, Lazarretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98:3527–3533.

    Article  PubMed  CAS  Google Scholar 

  32. Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S, Grano M, Colucci S, Svaldi M, Rizzoli V (2005) Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 106:2472–2483.

    Article  PubMed  CAS  Google Scholar 

  33. Giuliani N, Colla S, Rizzoli V (2004) New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-kappaB ligand (RANKL). Exp Hematol 32:685–691.

    Article  PubMed  CAS  Google Scholar 

  34. Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, Bonomini S, Hojden M, Sammarelli G, Barillè S, Bataille R, Rizzoli V (2002) Human myeloma cells stimulate the receptor activator of nuclear factor kappa-β ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 100:4615–4621.

    Article  PubMed  CAS  Google Scholar 

  35. Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Bonomini S, Crugnola M, Mancini C, Martella E, Ferrari L, Tabilio A, Rizzoli V (2007) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110:334–338.

    Article  PubMed  CAS  Google Scholar 

  36. Giuliani N, Rizzoli V, Roodman GD (2006) Multiple Myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 108:3992–3996.

    Article  PubMed  CAS  Google Scholar 

  37. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Bladé J, Boccadoro M, Child JA, Avet-Loiseau H, Kyle RA, Lahuerta JJ, Ludwig H, Morgan G, Powles R, Shimizu K, Shustik C, Sonneveld P, Tosi P, Turesson I, Westin J (2005) International Staging System for Multiple Myeloma. J Clin Oncol 23:3412–3420.

    Article  PubMed  Google Scholar 

  38. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA (2006) A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and IL-6: A potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24:986–991.

    Article  PubMed  CAS  Google Scholar 

  39. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD (2001) Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97:3349–3353.

    Article  PubMed  CAS  Google Scholar 

  40. Hjertner O, Torgersen ML, Seidel C, et al. (1999) Hepatocyte Growth Factor (HGF) induces interleukin-11 secretion from osteoblasts; a possible role for HGF in myeloma-associated osteolytic bone disease. Blood 94:3883–3888.

    PubMed  CAS  Google Scholar 

  41. Hjertner O, Torgersen ML, Seidel C, Hjorth-Hansen H, Waage A, Børset M, Sundan A (1999) Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice. J Bone Miner Res 14:256–263.

    Article  Google Scholar 

  42. Hollsberg P, Hafler DA (1993) Seminars in medicine of the Beth Israel Hospital, Boston. Pathogenesis of diseases induced by human lymphotropic virus type I infection. N Engl J Med 328:1173–1182.

    Article  PubMed  CAS  Google Scholar 

  43. Huston A, Roodman GD (2007) Myeloma bone disease: Translational therapeutic strategies in multiple myeloma. I.M. Ghobrial and K.A. Anderson (Eds). Informa Healthcare, New York, NY, Chapter 3, pgs. 45–60.

    Google Scholar 

  44. Hustu HO, Pinkel D (1967) Lymphosarcoma, Hodgkin's disease and leukemia in bone. Clin Orthop 52:83–93

    Article  PubMed  CAS  Google Scholar 

  45. Inukai T, Hirose K, Inaba T, Kurosawa H, Hama A, Inada H, Chin M, Nagatoshi Y, Ohtsuka Y, Oda M, Goto H, Endo M, Morimoto A, Imaizumi M, Kawamura N, Miyajima Y, Ohtake M, Miyaji R, Saito M, Tawa A, Yanai F, Goi K, Nakazawa S, Sugita K (2007) Hypercalcemia in childhood acute lymphoblastic leukemia: frequent implication of parathyroid hormone-related peptide and E2A-HLF from translocation 17;19. Leukemia 21: 288–296.

    Article  PubMed  CAS  Google Scholar 

  46. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer Statistics 2007. Cancer J Clin 57: 43–66.

    Article  Google Scholar 

  47. Kaplan HS. Hodgkin's disease, 2nd ed. Cambridge: Harvard University Press, 1980. p. 121

    Google Scholar 

  48. Karsenty G, Ducy P, Starbuck M, Priemel M, Shen J, Geoffroy V, Amling M (1999) Cbfa1 as a regulator of osteoblast differentiation and function. Bone 25:107–108.

    Article  PubMed  CAS  Google Scholar 

  49. Kiyokawa T, Yamaguchi K, Takeya M, Takahashi K, Watanabe T, Matsumoto T, Lee SY, Takatsuki K (1987) Hypercalcemia and osteoclast proliferation in adult T-cell leukemia. Cancer 59:1187–1191.

    Article  PubMed  CAS  Google Scholar 

  50. Kobayashi T, Kronenberg H (2005) Minireview: Transcriptional regulation in development of bone. Endocrinology 146:1012–1017.

    Article  PubMed  CAS  Google Scholar 

  51. Komori T (2002) Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 87: 1–8.

    Article  PubMed  CAS  Google Scholar 

  52. Kyle RA (1992) Diagnostic criteria of multiple myeloma. Hematol Oncol Clin North Am 6:347–358.

    PubMed  CAS  Google Scholar 

  53. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Melton LJ 3rd (2004) Incidence of multiple myeloma in Olmsted County, Minnesota: Trend over 6 decades. Cancer 101:2667–2674.

    Article  PubMed  Google Scholar 

  54. Kyle RA, Yee GC, Somerfield MR, Flynn PJ, Halabi S, Jagannath S, Orlowski RZ, Roodman GD, Twilde P, Anderson K (2007) American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol 25:2464–2472.

    Article  PubMed  CAS  Google Scholar 

  55. Lacy MQ, Dispenzieri A, Gertz MA, Greipp PR, Gollbach KL, Hayman SR, Kumar S, Lust JA, Rajkumar SV, Russell SJ, Witzig TE, Zeldenrust SR, Dingli D, Bergsagel PL, Fonseca R, Reeder CB, Stewart AK, Roy V, Dalton RJ, Carr AB, Kademani D, Keller EE, Viozzi CF, Kyle RA (2006) Mayo clinic consensus statement for the use of bisphosphonates in multiple myeloma. Mayo Clin Proc 81:1047–1053.

    Article  PubMed  CAS  Google Scholar 

  56. Lahtinen R, Laakso M, Palva I, Virkkunen P, Elomaa I (1992) Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Lancet 340:1049–1052.

    Article  PubMed  CAS  Google Scholar 

  57. Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD, Choi SJ (2004) IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 103:2308–2315.

    Article  PubMed  CAS  Google Scholar 

  58. Lentzsch S, Ehrlich L, Roodman GD (2007) Pathophysiology of multiple myeloma bone disease. Hematol Oncol Clin North Am 21:1035–1049.

    Article  PubMed  Google Scholar 

  59. Lentzsch S, Gries M, Janz M, Bargou R, Dörken B, Mapara MY (2003) Macrophage inflammatory protein 1-alpha (MIP-1 alpha ) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 101:3568–3573.

    Article  PubMed  CAS  Google Scholar 

  60. Lieberman IH, Dudeney S, Reinhardt MK, Bell G (2001) Initial outcome and efficacy of “kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures. Spine 26:1631–1638.

    Article  PubMed  CAS  Google Scholar 

  61. Martin TJ (2005) Osteoblast-derived PTHrP is a physiologic regulator of bone formation. J Clin Invest Ligotion 115:2322–2324

    Article  PubMed  CAS  Google Scholar 

  62. Melton LJ 3rd, Kyle RA, Achenbach SJ, Oberg AL, Rajkumar SV (2005) Fracture risk with multiple myeloma: A population-based study. J Bone Miner Res 20:487–493.

    Article  PubMed  Google Scholar 

  63. Newcomer LN, Silverstein MB, Cadman EC, Farber LR, Bertino JR, Prosnitz LR (1982) Bone involvement in Hodgkin's disease. Cancer 49:338–342.

    Article  PubMed  CAS  Google Scholar 

  64. Ngan H, Preston BJ (1975) Non-Hodgkin’s lymphoma presenting with osseous lesions. Clin Radiol 26: 351–356.

    Article  PubMed  CAS  Google Scholar 

  65. Nosaka K, Miyamoto T, Sakai T, Mitsuya H, Suda T, Matsuoka M (2002) Mechanism of hypercalcemia in adult T-cell leukemia: Overexpression of receptor activator of nuclear factor kappaB ligand on adult T-cell leukemia cells. Blood 99:634–640.

    Article  PubMed  CAS  Google Scholar 

  66. Okada Y, Tsukada J, Nakano K, Tonai S, Mine S, Tanaka Y (2004) Macrophage Inflammatory Protein-1a Induces Hypercalcemia in Adult T-cell Leukemia. J Bone Miner Res 19:1105–1110.

    Article  PubMed  CAS  Google Scholar 

  67. Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, Kido S, Inoue D, Matsumoto T (2005) Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 106:3160–3165.

    Article  PubMed  CAS  Google Scholar 

  68. Oyajobi BO (2007) Multiple myeloma/hypercalcemia. Arthritis Res Ther 9:S4.

    Article  PubMed  Google Scholar 

  69. Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S, Grubbs B, Zhao M, Chen D, Sherry B, Mundy GR (2003) Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 102:311–319.

    Article  PubMed  CAS  Google Scholar 

  70. Oyajobi BO, Traianedes K, Yoneda T, Mundy GR (1998) Expression of RANK ligand (RANKL) by myeloma cells requires binding to bone marrow stromal cells via an α4β1-VCAM-1 interaction. Bone Suppl:S180.

    Google Scholar 

  71. Ozdemirli M, Mankin HJ, Aisenberg AC, Harris NL (1996) Hodgkin's disease presenting as a solitary bone tumor. A report of four cases and review of the literature. Cancer 77:79–88.

    Article  PubMed  CAS  Google Scholar 

  72. Pear BL (1974) Skeletal manifestations of the lymphomas and leukemias. Semin Roenigenol 9:229–239.

    Article  CAS  Google Scholar 

  73. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, Michaeli J, Epstein J, Choi Y (2001) Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98: 11581–11586.

    Article  PubMed  CAS  Google Scholar 

  74. Peter SA, Cervantes JF (1995) Hypercalcemia associated with adult T cell-leukemia/lymphoma (ATL) [review]. J Natl Med Assoc 87:746–748.

    PubMed  CAS  Google Scholar 

  75. Riccardi A, Gobbi PG, Ucci G, Bertoloni D, Luoni R, Rutigliano L, Ascari E (1991) Changing clinical presentation of multiple myeloma. Eur J Cancer 27:1401–1405.

    Article  PubMed  CAS  Google Scholar 

  76. Richard V, Lairmore MD, Green PL, Feuer G, Erbe RS, Albrecht B, D’Souza C, Keller ET, Dai J, Rosol TJ (2001) Humoral hypercalcemia of malignancy: Severe combined immunodeficient/beige mouse model of adult T-cell lymphoma independent of human T-cell lymphotropic virus type-1 tax expression. Am J Pathol 158:2219–2228.

    Article  PubMed  CAS  Google Scholar 

  77. Rizzoli R, Ferrari SL, Pizurki L, Caverzasio J, Bonjour JP (1992) Actions of parathyroid hormone and parathyroid hormone-related protein. J Endocrinol Ivest 15: 51–61.

    CAS  Google Scholar 

  78. Roodman GD (1997) Mechanisms of bone lesions in multiple myeloma and lymphoma. Cancer 80: 1557–1563.

    Article  PubMed  CAS  Google Scholar 

  79. Rosen LS, Gordon D, Antonio BS, Kaminski M (2001) Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 7:377–387.

    PubMed  CAS  Google Scholar 

  80. Rosenberg SA, Diamond HD, Jaslowitz B, Craver LF (1961) Lymphosarcoma: A review of 1269 cases. Medicine (BaIt) 40:31–84.

    Article  PubMed  CAS  Google Scholar 

  81. Scutellari PN, Orzincolo C, Bagni B, Feggi L, Franceschini F, Spanedda R (1992) Bone disease in multiple myeloma. A study of 237 cases. Radiologia Medica 83:542–560.

    PubMed  CAS  Google Scholar 

  82. Seymour JF, Gagel RF (1993) Calcitrol: The major humoral mediator of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood 82: 1383–1394.

    PubMed  CAS  Google Scholar 

  83. Singhal S, Mehta J (2006) Multiple myeloma. Clin J Am Soc Nephrol 1:1322–1330.

    Article  PubMed  CAS  Google Scholar 

  84. Stuhlburgh J, Ellis F (1965) Hodgkin’s disease of bone: Favorable prognostic significance? Am J Roentgenol Radium Ther Nucl Med 93:568–572.

    Google Scholar 

  85. Tajima K (1990) T- and B-cell Malignancy Study Group: The 4th nationwide study of adult T-cell leukemia/lymphoma (ATL) in Japan: Estimates of risk of ATL and its geographical and clinical features. Int J Cancer 45:237–243.

    Article  PubMed  CAS  Google Scholar 

  86. Tanaka Y, Maruo A, Fujii K, Nomi M, Nakamura T, Eto S, Minami Y (2000) ICAM-1 discriminates functionally different populations of human osteoblasts: Characteristic involvement of cell cycle regulators. J Bone Miner Res 15:1912–1913.

    Article  PubMed  CAS  Google Scholar 

  87. Taube T, Beneton MN, McCloskey EV, Rogers S, Greaves M, Kanis JA (1992) Abnormal bone remodeling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol 49:192–198.

    Article  PubMed  CAS  Google Scholar 

  88. Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Politou M, Meletis J, Viniou N, Yataganas X, Goldman JM, Rahemtulla A (2003) Soluble receptor activator of nuclear factor κB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel of prognostic index. Blood 102:1064–1069.

    Article  PubMed  CAS  Google Scholar 

  89. Thirunavukkarasu K, Halladay DL, Miles RR, Yang X, Galvin RJ, Chandrasekhar S, Martin TJ, Onyia JE (2000) The osteoblast-specific transcription factor Cbfa 1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem 275:25163–25172.

    Article  PubMed  CAS  Google Scholar 

  90. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494.

    Article  PubMed  CAS  Google Scholar 

  91. Vieta JO, Friedell HL, Craver LF (1942) A survey of Hodgkin's disease and lymphosarcoma in bone. Radiology 39: 1–15.

    Google Scholar 

  92. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr (2007) Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109: 2106–2011.

    Article  PubMed  CAS  Google Scholar 

  93. Zangari M, Esseltine D, Lee CK, Barlogie B, Elice F, Burns MJ, Kang SH, Yaccoby S, Najarian K, Richardson P, Sonneveld P, Tricot G (2005) Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 131:71–73.

    Article  PubMed  CAS  Google Scholar 

  94. Zeimer H, Firkin F, Grill V, Slavin J, Zhou H, Martin TJ (2000) Assessment of cellular expression of parathyroid hormone-related protein mRNA and protein in multiple myeloma. J Pathol 192:336–341.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Sehgal, R., Sanfilippo, K., Roodman, G.D. (2010). Multiple Myeloma and Other Hematological Malignancies of Bone. In: Bone and Cancer. Topics in Bone Biology, vol 5. Springer, London. https://doi.org/10.1007/978-1-84882-019-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-019-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-018-0

  • Online ISBN: 978-1-84882-019-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics