Skip to main content

Prostate Cancer Bone Colonization: Osteomimicry in the Bone Niche

  • Chapter
  • First Online:
Bone and Cancer

Part of the book series: Topics in Bone Biology ((TBB,volume 5))

Abstract

Maintenance of a healthy skeleton requires a stable relationship between osteoblast and osteoclast activity. When cancer cells spread to bone, they interact with the bone cells to express bone-like proteins and participate with bone cells in inducing osteoclasts and osteoblasts, thereby bringing about a metabolic imbalance between osteoblasts and osteoclasts. This imbalance may favor osteosclerotic/osteoblastic processes, as in prostate cancer (PCa) or osteosarcoma, or activate osteolytic processes, as in breast cancer and myeloma. The ability of cancer cells to undergo phenotypic changes that allow them to form bone is termed “osteomimicry” and permits cancer cells to home, adhere, and migrate to bone, to invade bone space, and then to utilize the rich bone microenvironment to proliferate and survive because of the abundance of growth factors (GFs) and extracellular matrix molecules (ECMs) found in the bone niche (see Chapter 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PCa:

prostate cancer

PSA:

prostate-specific antigen

OC:

osteocalcin

BSP:

bone sialoprotein

RANKL:

receptor activator of NFκB ligand

HS:

heparan sulfate

HSPG:

heparan sulfate proteoglycan

HPSE:

heparanase

ROS:

reactive oxygen species

β2-M:

β2-microglobulin

PKA:

protein kinase A

EMT:

epithelial-to-mesenchymal transition

NED:

neuroendocrine differentiation

GFs:

growth factors

ECMs:

extracellular matrices

CREB:

cyclic AMP-responsive element binding protein

FGF:

fibroblast growth factor

VEGF:

vascular endothelial growth factor

TGF-β:

transforming growth factor β

BMPs:

bone morphogenetic proteins

PIN:

prostate intraepithelial neoplasia

FAK:

focal adhesion kinase

MMPs:

matrix metalloproteinases

References

  1. Arnold R, Chung LWK, Farach-Carson MC, Huang WC, Lue HW, Marshall FF, et al. (2008) Prostate cancer bone metastasis: Reactive oxygen species, growth factors, and heparan sulfate proteoglycans provide a signaling triad that supports progression. J Urol. 179:192.

    Article  Google Scholar 

  2. Arnold R, Chung LWK, Farach-Carson MC, Huang WC, Lue HW, Marshall FF, et al. (2008) Prostate cancer bone metastasis: Reactive oxygen species, growth factors, and heparan sulfate proteoglycans provide a signaling triad that supports progression. In: Proceedings of the 99th Annual Meeting of the American Association for Cancer Research; 2008 Apr 12–16; San Diego, CA. Philadelphia, PA: AACR; 2008. Abstract 4504.

    Google Scholar 

  3. Arnold RS, He J, Remo A, Ritsick D, Yin-Goen Q, Lambeth JD, et al. (2007) Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1. Am J Pathol. 171:2021–32.

    Article  PubMed  CAS  Google Scholar 

  4. Ayala G, Tuxhorn JA, Wheeler TM, Frolov A, Scardino PT, Ohori M, et al. (2003) Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin Cancer Res. 9:4792–801.

    PubMed  CAS  Google Scholar 

  5. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, et al. (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem. 280:17497–506.

    Article  PubMed  CAS  Google Scholar 

  6. Bailey JM, Singh PK, Hollingsworth MA (2007) Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem. 102:829–39.

    Article  PubMed  CAS  Google Scholar 

  7. Baselga J, Rothenberg ML, Tabernero J, Seoane J, Daly T, Cleverly A, et al. (2008) TGF-beta signalling-related markers in cancer patients with bone metastasis. Biomarkers. 13:217–36.

    Article  PubMed  CAS  Google Scholar 

  8. Bix G, Iozzo RA, Woodall B, Burrows M, McQuillan A, Campbell S, et al. (2007) Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the alpha2beta1-integrin receptor. Blood. 109:3745–8.

    Article  PubMed  CAS  Google Scholar 

  9. Booker LM, Habermacher GM, Jessie BC, Sun QC, Baumann AK, Amin M, et al. (2006) North American white mitochondrial haplogroups in prostate and renal cancer. J Urol. 175:468–72; discussion 472–3.

    Article  PubMed  CAS  Google Scholar 

  10. Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, ten Dijke P, van der Pluijm G (2007) TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis. 24: 609–17.

    Article  PubMed  CAS  Google Scholar 

  11. Chen Q, Sivakumar P, Barley C, Peters DM, Gomes RR, Farach-Carson MC, et al. (2007) Potential role for heparan sulfate proteoglycans in regulation of transforming growth factor-beta (TGF-beta) by modulating assembly of latent TGF-beta-binding protein-1. J Biol Chem. 282:26418–30.

    Article  PubMed  CAS  Google Scholar 

  12. Chung LW, Baseman A, Assikis V, Zhau HE (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol. 173:10–20.

    Article  PubMed  Google Scholar 

  13. Chung LW, Hsieh CL, Law A, Sung SY, Gardner TA, Egawa M, et al. (2003) New targets for therapy in prostate cancer: modulation of stromal–epithelial interactions. Urology. 62:44–54.

    Article  PubMed  Google Scholar 

  14. Chung LW, Huang WC, Sung SY, Wu D, Odero-Marah V, Nomura T, et al. (2006) Stromal–epithelial interaction in prostate cancer progression. Clin Genitourin Cancer. 5:162–70.

    Article  PubMed  Google Scholar 

  15. Cindolo L, Cantile M, Vacherot F, Terry S, de la Taille A (2007) Neuroendocrine differentiation in prostate cancer: from lab to bedside. Urol Int. 79:287–96.

    Article  PubMed  Google Scholar 

  16. Cook-Mills JM (2006) Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cell Mol Biol (Noisy-le-grand). 52:8–16.

    CAS  Google Scholar 

  17. D’Souza SS, Daikoku T, Farach-Carson MC, Carson DD (2007) Heparanase expression and function during early pregnancy in mice. Biol Reprod. 77: 433–41.

    Article  PubMed  Google Scholar 

  18. Edlund M, Miyamoto T, Sikes RA, Ogle R, Laurie GW, Farach-Carson MC, et al. (2001) Integrin expression and usage by prostate cancer cell lines on laminin substrata. Cell Growth Differ. 12:99–107.

    PubMed  CAS  Google Scholar 

  19. Edlund M, Sung SY, Chung LW (2004) Modulation of prostate cancer growth in bone microenvironments. J Cell Biochem. 91:686–705.

    Article  PubMed  CAS  Google Scholar 

  20. Farach-Carson MC, Brown AJ, Lynam M, Safran JB, Carson DD (2008) A novel peptide sequence in perlecan domain IV supports cell adhesion, spreading and FAK activation. Matrix Biol. 27:150–60.

    Article  PubMed  CAS  Google Scholar 

  21. Farach-Carson MC, Carson DD (2007) Perlecan – a multifunctional extracellular proteoglycan scaffold. Glycobiology. 17:897–905.

    Article  PubMed  CAS  Google Scholar 

  22. Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res. 569:3–11.

    Article  PubMed  CAS  Google Scholar 

  23. Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol. 42:399–435.

    Article  PubMed  CAS  Google Scholar 

  24. Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 3:411–21.

    Article  PubMed  CAS  Google Scholar 

  25. Hendrix MJ, Seftor EA, Kirschmann DA, Quaranta V, Seftor RE (2003) Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann N Y Acad Sci. 995:151–61.

    Article  PubMed  CAS  Google Scholar 

  26. Holleran JL, Miller CJ, Edgehouse NL, Pretlow TP, Culp LA (2002) Differential experimental micrometastasis to lung, liver, and bone with lacZ-tagged CWR22R prostate carcinoma cells. Clin Exp Metastasis. 19:17–24.

    Article  PubMed  Google Scholar 

  27. Huang W, Havel JJ, Zhau, HE, Qian, WP, Lue, HW, Chu, CY, Nomura, T and Chung, LWK (2008) Beta 2-Microglobulin signaling blockade inhibited androgen receptor axis and caused apoptosis in human prostate cancer cells. Clin. Cancer Res. 14:5341–7.

    Google Scholar 

  28. Huang WC, Wu D, Xie Z, Zhau HE, Nomura T, Zayzafoon M, et al. (2006) Beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Res. 66:9108–16.

    Article  PubMed  CAS  Google Scholar 

  29. Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LW (2005) Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res. 65:2303–13.

    Article  PubMed  CAS  Google Scholar 

  30. Huxley-Jones J, Clarke TK, Beck C, Toubaris G, Robertson DL, Boot-Handford RP (2007) The evolution of the vertebrate metzincins; insights from Ciona intestinalis and Danio rerio. BMC Evol Biol. 7:63.

    Article  PubMed  Google Scholar 

  31. Jiang YG, Luo Y, He DL, Li X, Zhang LL, Peng T, et al. (2007) Role of Wnt/beta-catenin signaling pathway in epithelial–mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol. 14:1034–9.

    Article  PubMed  CAS  Google Scholar 

  32. Jongsma J, Oomen MH, Noordzij MA, Van Weerden WM, Martens GJ, van der Kwast TH, et al. (2002) Different profiles of neuroendocrine cell differentiation evolve in the PC-310 human prostate cancer model during long-term androgen deprivation. Prostate. 50: 203–15.

    Article  PubMed  CAS  Google Scholar 

  33. Kamiya N, Suzuki H, Kawamura K, Imamoto T, Naya Y, Tochigi N, et al. (2008) Neuroendocrine differentiation in stage D2 prostate cancers. Int J Urol. 15:423–8.

    Article  PubMed  CAS  Google Scholar 

  34. Kugelberg E, Kofoid E, Reams AB, Andersson DI, Roth JR (2006) Multiple pathways of selected gene amplification during adaptive mutation. Proc Natl Acad Sci USA. 103:17319–24.

    Article  PubMed  CAS  Google Scholar 

  35. Leibovici D, Spiess PE, Agarwal PK, Tu SM, Pettaway CA, Hitzhusen K, et al. (2007) Prostate cancer progression in the presence of undetectable or low serum prostate-specific antigen level. Cancer. 109: 198–204.

    Article  PubMed  Google Scholar 

  36. Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, et al. (2005) Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate. 62:200–7.

    Article  PubMed  CAS  Google Scholar 

  37. Lu Y, Xiao G, Galson DL, Nishio Y, Mizokami A, Keller ET, et al. (2007) PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasion in vitro. Int J Cancer. 121:724–33.

    Article  PubMed  CAS  Google Scholar 

  38. Luo Y, He DL, Ning L, Shen SL, Li L, Li X, Zhau HE and Chung LWK (2006) Overexpression of hypoxia-inducible factor-1alpha increases the invasion potency of LNCaP cells in vitro. BJU Int. 98:1315–9.

    CAS  Google Scholar 

  39. Martin-Orozco RM, Almaraz-Pro C, Rodriguez-Ubreva FJ, Cortes MA, Ropero S, Colomer R, et al. (2007) EGF prevents the neuroendocrine differentiation of LNCaP cells induced by serum deprivation: the modulator role of PI3K/Akt. Neoplasia. 9:614–24.

    Article  PubMed  CAS  Google Scholar 

  40. Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, et al. (2005) Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. Faseb J. 19: 1125–7.

    PubMed  CAS  Google Scholar 

  41. Moe SM, Singh GK, Bailey AM (2000) Beta2-microglobulin induces MMP-1 but not TIMP-1 expression in human synovial fibroblasts. Kidney Int. 57:2023–34.

    Article  PubMed  CAS  Google Scholar 

  42. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2:584–93.

    Article  PubMed  CAS  Google Scholar 

  43. Odero-Marah VA, Wang R, Chu G, Zazafoon M, Xu J, Shi C, Marshall FF, Zhau HE and Chung LWK (2008) Receptor activator of NF-kappa B ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Res. 18:858–70.

    Google Scholar 

  44. Papetti M, Shujath J, Riley KN, Herman IM (2003) FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci. 44:4994–5005.

    Article  PubMed  Google Scholar 

  45. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med. 350:1655–64.

    Article  PubMed  CAS  Google Scholar 

  46. Salm SN, Burger PE, Coetzee S, Goto K, Moscatelli D, Wilson EL (2005) TGF-{beta} maintains dormancy of prostatic stem cells in the proximal region of ducts. J Cell Biol. 170:81–90.

    Article  PubMed  CAS  Google Scholar 

  47. Savore C, Zhang C, Muir C, Liu R, Wyrwa J, Shu J, et al. (2005) Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin Exp Metastasis. 22:377–90.

    Article  PubMed  CAS  Google Scholar 

  48. Schmidt A, Lorkowski S, Seidler D, Breithardt G, Buddecke E (2006) TGF-beta1 generates a specific multicomponent extracellular matrix in human coronary SMC. Eur J Clin Invest. 36:473–82.

    Article  PubMed  CAS  Google Scholar 

  49. Seven B, Varoglu E, Cayir K, Sahin A, Kantarci M (2008) Prostate carcinoma with peripheral metastases after prostatectomy and low levels of serum prostate specific antigen. Hell J Nucl Med. 11:55.

    Google Scholar 

  50. Sterling JA, Oyajobi BO, Grubbs B, Padalecki SS, Munoz SA, Gupta A, et al. (2006) The hedgehog signaling molecule Gli2 induces parathyroid hormone-related peptide expression and osteolysis in metastatic human breast cancer cells. Cancer Res. 66:7548–53.

    Article  PubMed  CAS  Google Scholar 

  51. Sung SY, Kubo H, Shigemura K, Arnold RS, Logani S, Wang R, et al. (2006) Oxidative stress induces ADAM9 protein expression in human prostate cancer cells. Cancer Res. 66:9519–26.

    Article  PubMed  CAS  Google Scholar 

  52. Sung SS, Hsieh CL, Zhau HE, Pathak S, Multani AS, et al. (2008) Coevolution of prostate cancer and bone stroma in 3-dimensional coculture: Implications for cancer growth and metastasis. Cancer Res. 68:9996–10003.

    Google Scholar 

  53. Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, et al. (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54: 2577–81.

    PubMed  CAS  Google Scholar 

  54. Thalmann GN, Sikes RA, Wu TT, Degeorges A, Chang SM, Ozen M, et al. (2000) LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate. 44:91–103 Jul 1;44 (2).

    Article  PubMed  CAS  Google Scholar 

  55. Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR (2002) Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res. 8:2912–23.

    PubMed  CAS  Google Scholar 

  56. Wu D, Zhau HE, Huang WC, Iqbal S, Habib FK, Sartor O, et al. (2007) cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene. 26:5070–7.

    Google Scholar 

  57. Xu J, Wang R, Xie ZH, Odero-Marah V, Pathak S, Multani A, et al. (2006) Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate. 66: 1664–73.

    Article  PubMed  CAS  Google Scholar 

  58. Yang DC, Tsay HJ, Lin SY, Chiou SH, Li MJ, Chang TJ, et al. (2008) cAMP/PKA regulates osteogenesis, adipogenesis and ratio of RANKL/OPG mRNA expression in mesenchymal stem cells by suppressing leptin. PLoS ONE. 3:e1540.

    Article  PubMed  Google Scholar 

  59. Ye L, Lewis-Russell JM, Kyanaston HG, Jiang WG (2007) Bone morphogenetic proteins and their receptor signaling in prostate cancer. Histol Histopathol. 22:1129–47.

    PubMed  CAS  Google Scholar 

  60. Zhau H, Odero-Marah, V, Lue, HW, Nomura, T, Wang, R, Chu, G, Liu, ZN, Zhou, BP, Huang, WC, and Chung, LWK (2008) Epithelial to mesenchymal transition (EMT) in human prostate cancer: Lessons learned from ARCaP model. Clin Exp Metastasis. 25:601–10.

    Google Scholar 

  61. Zhau HE, Goodwin TJ, Chang SM, Baker TL, Chung LW (1997) Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell Dev Biol Anim. 33:375–80.

    Article  PubMed  CAS  Google Scholar 

  62. Zhau HY, Chang SM, Chen BQ, Wang Y, Zhang H, Kao C, et al. (1996) Androgen-repressed phenotype in human prostate cancer. Proc Natl Acad Sci USA. 93: 15152–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Chung, L.W., Zhau, H.E., Petros, J.A., Farach-Carson, M.C. (2010). Prostate Cancer Bone Colonization: Osteomimicry in the Bone Niche. In: Bone and Cancer. Topics in Bone Biology, vol 5. Springer, London. https://doi.org/10.1007/978-1-84882-019-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-019-7_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-018-0

  • Online ISBN: 978-1-84882-019-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics