Skip to main content

Part of the book series: Engineering Materials and Processes ((EMP))

  • 964 Accesses

Abstract

The appearance of an electric polarisation in quartz single crystals that were subjected to a mechanical load was first reported by brothers P. Curie and J. Curie in experimental work in 1880 [1]. The effect that links a mechanical action (stress or strain) with an electric response (electric field, displacement or polarisation) is called the piezoelectric effect or, more exactly, the direct piezoelectric effect. At a later date, it was experimentally established that the converse piezoelectric effect is also observed in acentric single crystals in that an external electric field generates a mechanical response, i.e., a stress or strain of the sample [2, 3], similar to the electrostriction of dielectrics [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levanyuk AP, Sannikov DG, (1994) Piezoelectrics. In: Prokhorov AM (ed.) Physics Encyclopaedia. Vol. 4. Bolshaya Rossiyskaya Entsiklopedia, Moscow (in Russian), pp 188–189

    Google Scholar 

  2. Ikeda T, (1990) Fundamentals of Piezoelectricity. Oxford University Press, Oxford New York Toronto

    Google Scholar 

  3. Zheludev IS, (1971) Physics of Crystalline Dielectrics. Vol. 2: Electrical Properties. Plenum, New York

    Google Scholar 

  4. Uchino K, (1997) Piezoelectric Actuators and Ultrasonic Motors. Kluwer, Boston Dordrecht London

    Google Scholar 

  5. Khoroshun LP, Maslov BP, Leshchenko PV, (1989) Prediction of Effective Properties of Piezo-active Composite Materials. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  6. Berlincourt DA, Cerran DR, Jaffe H, (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason W (ed.) Physical Acoustics. Principles and Methods. Vol. 1: Methods and Devices. Pt A. Academic Press, New York London, pp 169–270

    Google Scholar 

  7. Hall DA, (2001) Review. Nonlinearity in piezoelectric ceramics. Journal of Materials Science 36:4575–4601

    Article  Google Scholar 

  8. Turik AV, Bondarenko EI, (1974) Effect of domain structure on physical properties of ferroelectrics. Ferroelectrics 7:303–305

    Google Scholar 

  9. Turik AV, (1970) Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3 with a laminar domain structure. Soviet Physics – Solid State 12:688–693

    Google Scholar 

  10. Turik AV, Topolov VYu, Aleshin VI (2000) On a correlation between remanent polarization and piezoelectric coefficients of perovskite-type ferroelectric ceramics. Journal of Physics D: Applied Physics 33:738–743

    Article  Google Scholar 

  11. Aleshin VI, (1990) Domain-orientation contribution into constants of ferroelectric polydomain single crystal. Zhurnal Tekhnicheskoi Fiziki 60:179–183 (in Russian)

    Google Scholar 

  12. Topolov VYu, (2003) Domain wall displacements and piezoelectric activity of KNbO3 single crystals. Journal of Physics: Condensed Matter 15:561–565

    Article  Google Scholar 

  13. Turik AV, Chernobabov AI, (1977) On an orientation contribution in dielectric, piezoelectric and elastic constants of ferroelectric ceramics. Zhurnal Tekhnicheskoi Fiziki 47:1944–1948 (in Russian)

    Google Scholar 

  14. Aleshin VI, (1991) Spherical inclusion in an anisotropic piezo-active medium. Kristallografiya 36:1352–1357 (in Russian)

    Google Scholar 

  15. Topolov VYu, Bondarenko EI, Turik AV, Chernobabov AI (1993) The effect of domain structure on electromechanical properties of PbTiO3-based ferroelectrics. Ferroelectrics 140:175–181

    Google Scholar 

  16. Aleshin VI, (1987) Properties of textures being formed on the basis of non-180 reorientations. Kristallografiya 32:422–426 (in Russian)

    Google Scholar 

  17. Bondarenko EI, Topolov VYu, Turik AV, (1990) The effect of 90° domain wall displacements on piezoelectric and dielectric constants of perovskite ceramics. Ferroelectrics 110:53–56

    Google Scholar 

  18. Bondarenko EI, Topolov VYu, Turik AV, (1991) The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectrics. Letters Section 13:13–19

    Article  Google Scholar 

  19. Turik AV, Topolov VYu, (1997) Ferroelectric ceramics with a large piezoelectric anisotropy. Journal of Physics D: Applied Physics 30:1541–1549

    Article  Google Scholar 

  20. Topolov VYu, Turik AV, Chernobabov AI, (1994) On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallography Reports 39:805–809

    Google Scholar 

  21. Rödel J, Kreher WS, (2000) Self-consistent modeling of non-linear effective properties of polycrystalline ferroelectric ceramics. Computational Materials Science 19:123–132

    Article  Google Scholar 

  22. Rödel J, Kreher WS, (2003) Modeling of linear and nonlinear behavior of polycrystalline ferroelectric ceramics. Journal of the European Ceramic Society 23:2297–2306

    Article  Google Scholar 

  23. Ruschmeyer K, Helke G, Koch J, Lubitz K, Möckl T, Petersen A, Riedel M, Schönecker A, (1995) Piezokeramik: Grundlagen, Werkstoffe, Applikationen. Expert- Verlag, Renningen-Malmsheim

    Google Scholar 

  24. Algueró M, Alemany C, Pardo L, González AM, (2004) Method for obtaining the full set of linear electric, mechanical and electromechanical coefficients and all related losses of a piezoelectric ceramic. Journal of the American Ceramic Society 87:209–215

    Article  Google Scholar 

  25. Dantsiger AYa, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN, (1994) Highly Effective Piezoceramic Materials (Handbook). Kniga, Rostov-on-Don (in Russian)

    Google Scholar 

  26. Gorish AV, Dudkevich VP, Kupriyanov MF, Panich AE, Turik AV, (1999) Piezoelectric Device-making. Vol. 1: Physics of Ferroelectric Ceramics. Radiotekhnika, Moscow (in Russian)

    Google Scholar 

  27. Haertling G, (1999) Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society 82:797–818

    Article  Google Scholar 

  28. Bechmann R, (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. Journal of the Acoustical Society of America 28:347–350

    Article  Google Scholar 

  29. Jaffe B, Cook WR, Jaffe H, (1971) Piezoelectric Ceramics. Academic Press, London New York

    Google Scholar 

  30. Ikegami S, Ueda I, Nagata T, (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. Journal of the Acoustical Society of America 50:1060–1066

    Article  Google Scholar 

  31. Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S, (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed.) Ferroelectricity and Related Phenomena. Vol. 4: Piezoelectricity. Gordon and Breach Science Publishers, New York London Paris Montreux Tokyo, pp 167–176

    Google Scholar 

  32. Nelli Silva EC, Ono Fonseca JS, Kikuchi N, (1997) Optimal design of piezoelectric microstructures. Computational Mechanics 19:397–410

    Article  MATH  Google Scholar 

  33. Levassort F, Lethiecq M, Certon D, Patat F, (1997) A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 44:445–452

    Article  Google Scholar 

  34. Zhang R, Jiang W, Jiang B, Cao W, (2002) Elastic, dielectric and piezoelectric coefficients of domain engineered 0.70Pb(Mg1/3Nb2/3)O3 – 0.30PbTiO3 single crystal. In: Cohen RE (ed.) Fundamental Physics of Ferroelectrics. American Institute of Physics, Melville, pp 188–197

    Google Scholar 

  35. Peng J, Luo H, He T, Xu H, Lin D, (2005) Elastic, dielectric, and piezoelectric characterization of 0.70Pb(Mg1/3Nb2/3)O3 – 0.30PbTiO3 single crystal. Materials Letters 59:640–643

    Article  Google Scholar 

  36. Zhang R, Jiang B, Cao W, (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3 – 0.33PbTiO3 single crystals. Journal of Applied Physics 90:3471–3475

    Article  Google Scholar 

  37. Cao H, Luo H, (2002) Elastic, piezoelectric and dielectric properties of Pb(Mg1/3Nb2/3)O3 – 38% PbTiO3 single crystal. Ferroelectrics 274:309–315

    Article  Google Scholar 

  38. Cao H, Schmidt VH, Zhang R, Cao W, Luo H, (2004) Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3 – 0.42PbTiO3 single crystal. Journal of Applied Physics 96:549–554

    Article  Google Scholar 

  39. Yin J, Jiang B, Cao W, (2000) Elastic, piezoelectric, and dielectric properties of 0.955 Pb(Zn1/3Nb2/3)O3 – 0.045PbTiO3 single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 47:285–291

    Article  Google Scholar 

  40. Zhang R, Jiang B, Cao W, Amin A, (2002) Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3 – 0.07PbTiO3 domain engineered single crystal. Journal of Materials Science Letters 21:1877–1879

    Article  Google Scholar 

  41. Jiang W, Zhang R, Jiang B, Cao W, (2003) Characterization of piezoelectric materials with large piezoelectric and electromechanical coupling coefficients. Ultrasonics 41:55–63

    Article  Google Scholar 

  42. Yin J, Jiang B, Cao W, (1999) Determination of elastic, piezoelectric and dielectric properties of Pb(Zn1/3Nb2/3)O3 – PbTiO3 single crystals. SPIE Conference on Ultrasonic Transducer Engineering. San Diego, California, February 1999. SPIE 3664:239–246

    Article  Google Scholar 

  43. Ritter T, Geng X, Shung KK, Lopath PD, Park S-E, Shrout TR, (2000) Single crystal PZN/PT – polymer composites for ultrasound transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 47:792–800

    Article  Google Scholar 

  44. Ye Z-G, Topolov VYu, (2001) Complex domain and heterophase structures in (1 – x)Pb(Mg1/3Nb2/3)O3 – xPbTiO3 single crystals. Ferroelectrics 253:79–86

    Article  Google Scholar 

  45. Topolov VYu, (2002) Intermediate monoclinic phase and elastic matching in perovskite-type solid solutions. Physical Review B 65:094207 – 6 p

    Article  Google Scholar 

  46. Topolov VYu, Turik AV, (2002) An intermediate monoclinic phase and electromechanical interactions in xPbTiO3 – (1 – x)Pb(Zn1/3Nb2/3)O3 crystals. Solid State Physics 44:1355–1362

    Article  Google Scholar 

  47. Aleshin VI, Luchaninov AG, (2001) Influence of mobility of the 90 domain walls on the effective properties of PbTiO3 ceramics. Journal of Physics D: Applied Physics 34:2353–2358

    Article  Google Scholar 

  48. Gururaja TR, Safari A, Newnham RE, Cross LE, (1988) Piezoelectric ceramicpolymer composites for transducer applications. In: Levinson LM (ed.) Electronic Ceramics: Properties, Devices, and Applications. Marcel Dekker, New York Basel, pp 92–128

    Google Scholar 

  49. Newnham RE, (1994) Nonmechanical properties of composites. In: Kelly A, Cahn RW, Bever MB (eds.) Concise Encyclopedia of Composite Materials. Elsevier, Oxford, pp 214–220

    Google Scholar 

  50. Pardo L, Mendiola J, Alemany C, (1988) Theoretical treatment of ferroelectric composites using Monte Carlo calculations. Journal of Applied Physics 64:5092–5097

    Article  Google Scholar 

  51. Chan HLW, Unsworth J, (1989) Simple model for piezoelectric ceramic / polymer 1–3 composites used in ultrasonic transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 36:434–441

    Article  Google Scholar 

  52. Grekov AA, Kramarov SO, Kuprienko AA, (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mechanics of Composite Materials, 25:54–61

    Article  Google Scholar 

  53. Levin VM, Rakovskaja MI, Kreher WS, (1999) The effective thermoelectroelastic properties of microinhomogeneous materials. International Journal of Solids and Structures 36:2683–2705

    Article  MATH  Google Scholar 

  54. Jensen H, (1991) Determination of macroscopic electro-mechanical characteristics of 1–3 piezoceramic / polymer composites by a concentric tube model. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 38:591–594

    Article  Google Scholar 

  55. Uchino K, (2000) Ferroelectric Devices. Marcell Dekker, New York

    Google Scholar 

  56. Nan C-W, Lin Y, (2002) Microstructure – property linkages in multi-phase electroceramics. Key Engineering Materials 228–229:37–42

    Google Scholar 

  57. Turik AV, Radchenko GS, (2002) Maxwell–Wagner relaxation in piezoactive media. Journal of Physics D: Applied Physics 35:1188–1192

    Article  Google Scholar 

  58. Radchenko GS, Turik AV, (2003) Giant piezoelectric effect in layered ferroelectric - polymer composites. Physics of the Solid State 45:1759–1762

    Article  Google Scholar 

  59. Turik AV, Chernobabov AI, Radchenko GS, Turik SA, (2004) Giant piezoelectric and dielectric enhancement in disordered heterogeneous systems. Physics of the Solid State 46:2213–2216

    Article  Google Scholar 

  60. Sokolkin YuV, Pan’kov AA, (2003) Electroelasticity of Piezo-composites with Irregular Structures. Fizmatlit, Moscow (in Russian)

    Google Scholar 

  61. Luchaninov AG, (2002) Piezoelectric Effect in Non-polar Heterogeneous Ferroelectric Materials. Volgograd State Academy of Architecture and Construction, Volgograd (in Russian)

    Google Scholar 

  62. Levin VM, (1995) The overall properties of piezoactive matrix composite materials. In: Markov KZ (ed.) Continuum Models and Discrete Systems: Proceedings of the 8th International Symposium, June 11–16, 1995, Varna, Bulgaria. World Scientific, Singapoure, pp 225–232

    Google Scholar 

  63. Berger H, Kari S, Gabbert U, Rodríguez-Ramos R, Bravo-Castillero J, Guinovart- Díaz R, (2005) A comprehensive numerical homogenization technique for calculating effective coefficients of uniaxial piezoelectric fibre composites. Materials Science and Engineering A 412:53–60

    Article  Google Scholar 

  64. Akcakaya E, Farnell GW, (1988) Effective elastic and piezoelectric constants of superlattices. Journal of Applied Physics 64:4469–4473

    Article  Google Scholar 

  65. Grekov AA, Kramarov SO, Kuprienko AA, (1987) Anomalous behavior of the twophase lamellar piezoelectric texture. Ferroelectrics 76:43–48

    Google Scholar 

  66. Christensen RM, (1979) Mechanics of Composite Materials. Wiley, New York

    Google Scholar 

  67. Telega JJ, (1990) Piezoelectricity and homogenization. Application to biomechanics. In: Continuum Models and Discrete Systems. Vol. 2. Longman, London, pp 220–230

    Google Scholar 

  68. Agbossou A, Viet HN, Pastor J, (1999) Homogenization techniques and application to piezoelectric composite materials. International Journal of Applied Electromagnetics and Mechanics 10:391–403

    Google Scholar 

  69. Banno H, (1983) Recent development of piezoelectric ceramic products and composite of synthetic rubber and piezoelectric ceramic particle. Ferroelectrics 50:3–12

    Google Scholar 

  70. Ramesh R, Cara H, Bowen C R, (2004) Characteristics of piezoceramic and 3–3 piezocomposite hydrophones evaluated by finite element modelling. Computational Materials Science 30:397–403

    Article  Google Scholar 

  71. Akdogan EK, Allahverdi M, Safari A, (2005) Piezoelectric composites for sensor and actuator applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52:746–775

    Article  Google Scholar 

  72. Safari A, Akdogan EK, (2006) Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331:153–179

    Article  Google Scholar 

  73. Furukawa T, Ishida K, Fukada E, (1979) Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics 50:4904–4912

    Article  Google Scholar 

  74. Yamamoto T, Urabe K, Banno H, (1993) BaTiO3 particle-size dependence of ferroelectricity in BaTiO3 / polymer composites. Japanese Journal of Applied Physics. Pt. 1 32:4272–4276

    Article  Google Scholar 

  75. Chan HLW, Ng PKL, Choy CL, (1999) Effect of poling procedure on the properties of lead zirconate titanate / vinylidene fluoride-trifluoroethylene composites. Applied Physics Letters 74:3029–3031

    Article  Google Scholar 

  76. Chan HLW, Cheung MC, Choy CL, (1999) Study on BaTiO3 / P(VDF-TrFE) 0–3 composites. Ferroelectrics 224:113–120

    Article  Google Scholar 

  77. Ng KL, Chan HLW, Choy CL, (2000) Piezoelectric and pyroelectric properties of PZT / P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 47:1308–1315

    Article  Google Scholar 

  78. Fang D-N, Soh AK, Li C-Q, Jiang B, (2001) Nonlinear behavior of 0–3 type ferroelectric composites with polymer matrices. Journal of Materials Science 36:5281–5288

    Article  Google Scholar 

  79. Lam KH, Chan HLW, (2005) Piezoelectric and pyroelectric properties of 65PMN–35PT / P(VDF-TrFE) 0–3 composites. Composites Science and Technology 65:1107 –1111

    Article  Google Scholar 

  80. Glushanin SV, Topolov VYu, (2005) A hierarchy of inclusions and electromechanical properties of 0–3 ceramic / polymer composites. Journal of Physics D: Applied Physics 38:2460–2467

    Article  Google Scholar 

  81. Glushanin SV, Topolov VYu, Krivoruchko AV, (2006) Features of piezoelectric properties of 0–3-type ceramic / polymer composites. Materials Chemistry and Physics 97:357–364

    Article  Google Scholar 

  82. Banno H, Saito S, (1983) Piezoelectric and dielectric properties of composites of synthetic rubber and PbTiO3 or PZT. Japanese Journal of Applied Physics 22 (Suppl. 2):67–69

    Google Scholar 

  83. Banno H, (1995) Theoretical equations for dielectric, elastic and piezoelectric constants of diphasic composite changing its connectivity from 3–0 to 0–3 via 3–3. In: Pandey RK, Liu M, Safari A (eds.) ISAF’94: Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics, University Park, PA, USA, August 7–10, 1994. IEEE, Piscataway, pp186–189

    Google Scholar 

  84. Newnham RE, Skinner DP, Cross LE, (1978) Connectivity and piezoelectricpyroelectric composites. Materials Research Bulletin 13:525–536

    Article  Google Scholar 

  85. Hashimoto KY, Yamaguchi M, (1986) Elastic, piezoelectric and dielectric properties of composite materials. In: Proceedings of IEEE Ultrasonic Symposium, Williamsburg, Va, November 17–19, 1986. Vol. 2. New York, pp 697–702.

    Google Scholar 

  86. Levassort F, Lethiecq M, Millar C, Pourcelot L, (1998) Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 45:1497–1505

    Article  Google Scholar 

  87. Levassort F, Topolov VYu, Lethiecq M, (2000) A comparative study of different methods of evaluating effective electromechanical properties of 0–3 and 1–3 ceramic / polymer composites. Journal of Physics D: Applied Physics 33:2064–2068

    Article  Google Scholar 

  88. Glushanin SV, Topolov VYu, (2001) Features of electromechanical properties of piezoelectric composites with elements of connectivity 1–1. Journal of Physics D: Applied Physics 34:2518–2529

    Article  Google Scholar 

  89. Topolov VYu, Glushanin SV, (2002) Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. Journal of Physics D: Applied Physics 35:2008–2014

    Article  Google Scholar 

  90. Benveniste Y, (1992) The determination of the elastic and electric fields in a piezoelectric inhomogeneity. Journal of Applied Physics 72:1086-1095

    Article  Google Scholar 

  91. Wang B, (1992) Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. International Journal ofSolids and Structures 29:293–308

    Article  MATH  Google Scholar 

  92. Dunn ML, Taya M, (1993) An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proceedings of the Royal Society (London), Pt A 443:265–287

    MATH  Google Scholar 

  93. Dunn ML, Taya M, (1993) Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. International Journal of Solids and Structures 30:161–175

    Article  MATH  Google Scholar 

  94. Dunn ML, (1993) Micromechanics of coupled electroelastic composites: Effective thermal expansion and pyroelectric coefficients. Journal of Applied Physics 73:5131–5140

    Article  Google Scholar 

  95. Dunn ML, Wienecke HA, (1997) Inclusions and inhomogeneities in transversely isotropic piezoelectric solids. International Journal of Solids and Structures 34:3571–3582

    Article  MATH  Google Scholar 

  96. Eshelby J, (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society (London), Pt A 241:376–396

    Article  MATH  MathSciNet  Google Scholar 

  97. Eshelby J, (1959) The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society (London), Pt A 252:561–569

    Article  MATH  MathSciNet  Google Scholar 

  98. Mura T, (1987) Micromechanics of Defects in Solids. 2nd edn. Martins Nijhoff, Dordrecht

    Google Scholar 

  99. Dunn ML, Wienecke HA, Li JY, (1997). Multiple-scale micromechanics of heterogeneous piezoelectric media: defects, ceramics, and composites. In: Inoue K, Shen SIY, Taya M (eds.) Proceedings of the First US – Japan Workshop on Smart Materials and Structures, Warrendale, 1996. The Minerals, Metals & Materials Society, Warrendale, pp 203–215

    Google Scholar 

  100. Wu T-L, (2000) Micromechanics determination of electroelastic properties of piezoelectric materials containing voids. Materials Science and Engineering A280:320–327

    Article  Google Scholar 

  101. Huang JH, Yu S, (1994) Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Composites Engineering 4:1169–1182

    Article  Google Scholar 

  102. Mikata Y, (2001) Explicit determination of piezoelectric Eshelby tensors for a spheroidal inclusion. International Journal of Solids and Structures 38:7045–7063

    Article  MATH  Google Scholar 

  103. Nan C-W, (1994) Effective-medium theory of piezoelectric composites. Journal of Applied Physics 76:1155–1163

    Article  Google Scholar 

  104. Fakri N, Azrar L, El Bakkali L, (2003) Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. International Journal of Solids and Structures 40:361–384

    Article  MATH  Google Scholar 

  105. Huang JH, Kuo W-S, (1996) Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Materialia 44:4889–4898

    Article  Google Scholar 

  106. Jiang B, Fang D-N, Hwang K-C, (1999) A unified model for piezocomposites with non-piezoelectric matrix and piezoelectric ellipsoidal inclusions. International Journal of Solids and Structures 36:2707–2733

    Article  MATH  Google Scholar 

  107. Mori T, Tanaka K, (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21:571–574

    Article  Google Scholar 

  108. Topolov VYu, Kamlah M, (2004) Piezoelectric properties of PbTiO3-based 0–3 and 0–1–3 composites. Journal of Physics D: Applied Physics 37:1576–1585

    Article  Google Scholar 

  109. Dunn ML, Taya M, (1993) Electromechanical properties of porous piezoelectric ceramics. Journal of the American Ceramic Society 76:1697–1706

    Article  Google Scholar 

  110. Huang JH, Chiu Y-H, Liu H-K, (1988) Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions. Journal of Applied Physics 83:5364–5370

    Article  Google Scholar 

  111. Huang JH, (1998) Analytical predictions for the magnetoelectric coupling in piezoelectric materials reinforced by piezoelectric ellipsoidal inclusions. Physical Review B 58:12–15

    Article  Google Scholar 

  112. Wu T-L, Huang JH, (2000) Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. International Journal of Solids and Structures 37:2981–3009

    Article  MATH  Google Scholar 

  113. Pettermann HE, Suresh S, (2000) A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. International Journal of Solids and Structures 37:5447–5464

    Article  MATH  Google Scholar 

  114. Bowen CR, Perry A, Stevens R, Mahon S, (2001) Analytical and numerical modelling of 3–3 piezoelectric composites. Integrated Ferroelectrics 32:333–342

    Article  Google Scholar 

  115. Kara H, Perry A, Stevens R, Bowen CR, (2002) Interpenetrating PZT / polymer composites for hydrophones: Models and experiments. Ferroelectrics 265:317–332

    Article  Google Scholar 

  116. Jayasundere N, Smith BV, (1993) Dielectric constant for binary piezoelectric 0–3 composite. Journal of Applied Physics 73:2462–2466

    Article  Google Scholar 

  117. Poizat C, Sester M, (2001) Homogénéisation périodique de composites piézoélectriques 0–3: influence de la distribution. Revue des Composites et des Matériaux Avancés 11:65–74

    Article  Google Scholar 

  118. Kar-Gupta R, Venkatesh TA, (2005) Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. Journal of Applied Physics 98:054102 – 14 p

    Article  Google Scholar 

  119. Shuvalov LA, Ourousovskaya AA, Zheludev IS, Zalessky AV, Semiletov SA, Grechushnikov BN, Chistyakov IG, Pikin SA, (1981) Modern Crystallography. Vol. 4: Physical Properties of Crystals. Nauka, Moscow (in Russian)

    Google Scholar 

  120. Topolov VYu, (1995) Anisotropy of electromechanical properties in KNbO3 crystals with S-type domain boundaries. Journal of Physics: Condensed Matter 7:7405–7408

    Article  Google Scholar 

  121. Topolov VYu, Turik AV, (1998) Electromechanical constants and their anisotropy in LiNbO3-type crystals having 180 inclined domain walls. Journal of Physics: Condensed Matter 10:451–459

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Effective Electromechanical Properties in Piezo-composites. In: Electromechanical Properties in Composite Based on Ferroelectrics. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-000-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-000-5_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-999-8

  • Online ISBN: 978-1-84882-000-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics