Skip to main content

Signal Transduction Pathways in Critical Illness and Injury

  • Chapter
  • First Online:
Science and Practice of Pediatric Critical Care Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradshaw RA, Dennis EA. Handbook of Cell Signaling. San Diego, CA: Elsevier Academic Press; 2003.

    Google Scholar 

  2. Angus DC, Fink MP. Molecular biology for today’s practicing intensivist. Crit Care Med 2005;33:S399.

    Article  PubMed  Google Scholar 

  3. Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol 1902;28:325.

    PubMed  CAS  Google Scholar 

  4. Wright RD. The origin of the term “hormone.” Trends Biochem Sci 1978;3:275–277.

    Google Scholar 

  5. Wong HR. Translation. Crit Care Med 2005;33:S404–406.

    Article  PubMed  Google Scholar 

  6. Read RC, Wyllie DH. Toll receptors and sepsis. Curr Opin Crit Care 2001;7:371–375.

    Article  PubMed  CAS  Google Scholar 

  7. Dunne A, O’Neill LA. The interleukin-1 receptor/toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003;171:re3.

    Google Scholar 

  8. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 1995;80:225–236.

    Article  PubMed  CAS  Google Scholar 

  9. Hunter T. Protein modification: phosphorylation on tyrosine residues. Curr Opin Cell Biol 1989;1:1168–1181.

    Article  PubMed  CAS  Google Scholar 

  10. Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature 2001;410:37–45.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 kinases. Science 2002;298:1911–1912.

    Article  PubMed  CAS  Google Scholar 

  12. Goggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, Schutze S, Gulbins E, Uhlig S. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 2004;10:155–160.

    Article  PubMed  CAS  Google Scholar 

  13. Galie N, Manes A, Branzi A. The endothelin system in pulmonary arterial hypertension. Cardiovasc Res 2004;61:227–237.

    Article  PubMed  CAS  Google Scholar 

  14. Karin M. The NF-κB activation pathway: its regulation and role in inflammation and cell survival. Cancer J Sci Am 1998;4(Suppl 1):S92–S99.

    PubMed  Google Scholar 

  15. Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004;25:280–288.

    Article  PubMed  CAS  Google Scholar 

  16. Senftleben U, Karin M. The IKK/NF-κB pathway. Crit Care Med 2002;30:S18–S26.

    Article  CAS  Google Scholar 

  17. Delhase M, Karin M. The I κ B kinase: a master regulator of NF-κB, innate immunity, and epidermal differentiation. Cold Spring Harbor Symp Quant Biol 1999;64:491–503.

    Article  PubMed  CAS  Google Scholar 

  18. Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 1999;284:309–313.

    Article  PubMed  CAS  Google Scholar 

  19. Das AK, Helps NR, Cohen PT, Barford D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 1996;15:6798–6809.

    PubMed  CAS  Google Scholar 

  20. Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X. IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1- induced activation of NFκ B. J Biol Chem 2001;276:41661–41667.

    Article  PubMed  CAS  Google Scholar 

  21. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001;11:372–377.

    Article  PubMed  CAS  Google Scholar 

  22. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000;18: 621–663.

    Article  PubMed  CAS  Google Scholar 

  23. Wong HR, Shanley TP. Signal transduction pathways in acute lung injury: NF-κB and AP-1. In: Wong HR, Shanley TP, eds. Molecular Biology of Acute Lung Injury. Norwell, MA: Kluwer Academic Publishers; 2001:1–16.

    Google Scholar 

  24. Jarrar D, Kuebler JF, Rue LW, 3rd, Matalon S, Wang P, Bland KI, Chaudry IH. Alveolar macrophage activation after trauma-hemorrhage and sepsis is dependent on NF-κB and MAPK/ERK mechanisms. Am J Physiol Lung Cell Mol Physiol 2002;283:L799–L805.

    PubMed  CAS  Google Scholar 

  25. Arnalich F, Garcia-Palomero E, Lopez J, Jimenez M, Madero R, Renart J, Vazquez JJ, Montiel C. Predictive value of nuclear factor κB activity and plasma cytokine levels in patients with sepsis. Infect Immun 2000;68:1942–1945.

    Article  PubMed  CAS  Google Scholar 

  26. Bohrer H, Qiu F, Zimmermann T, Zhang Y, Jllmer T, Mannel D, Bottiger BW, Stern DM, Waldherr R, Saeger HD, Ziegler R, Bierhaus A, Martin E, Nawroth PP. Role of NFκB in the mortality of sepsis. J Clin Invest 1997;100:972–985.

    Article  PubMed  CAS  Google Scholar 

  27. Paterson RL, Galley HF, Dhillon JK, Webster NR. Increased nuclear factor kappa B activation in critically ill patients who die. Crit Care Med 2000;28:1047–1051.

    Article  PubMed  CAS  Google Scholar 

  28. Hoberg JE, Popko AE, Ramsey CS, Mayo MW. IκB kinase α-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 2006;26:457–471.

    Article  PubMed  CAS  Google Scholar 

  29. Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA, Peyron JF. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 1996;86: 787–798.

    Article  PubMed  CAS  Google Scholar 

  30. Ito CY, Kazantsev AG, Baldwin AS, Jr. Three NF-kappa B sites in the I kappa B-alpha promoter are required for induction of gene expression by TNF alpha. Nucleic Acids Res 1994;22:3787–3792.

    Article  PubMed  CAS  Google Scholar 

  31. Arenzana-Seisdedos F, Thompson J, Rodriguez MS, Bachelerie F, Thomas D, Hay RT. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol 1995;15:2689–2696.

    PubMed  CAS  Google Scholar 

  32. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997;9:240–246.

    Article  PubMed  CAS  Google Scholar 

  33. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000;103:239–252.

    Article  PubMed  CAS  Google Scholar 

  34. Herlaar E, Brown Z. p38 MAPK signaling cascades in inflammatory disease. Mol Med Today 1999;5:439–447.

    Article  PubMed  CAS  Google Scholar 

  35. Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr Opin Cell Biol 1998; 10:205–219.

    Article  PubMed  CAS  Google Scholar 

  36. Su B, Karin M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol 1996;8:402–411.

    Article  PubMed  CAS  Google Scholar 

  37. Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC, Billstrom MA, Henson PM, Johnson GL, Worthen GS. Selective activation and functional significance of p38α mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest 1999;103:851–858.

    Article  PubMed  CAS  Google Scholar 

  38. Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 2001;21:6461–6469.

    Article  PubMed  CAS  Google Scholar 

  39. Read MA, Whitley MZ, Gupta S, Pierce JW, Best J, Davis RJ, Collins T. Tumor necrosis factor α-induced E-selectin expression is activated by the nuclear factor-κB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J Biol Chem 1997;272:2753– 2761.

    Article  PubMed  CAS  Google Scholar 

  40. Brown GE, Stewart MQ, Bissonnette SA, Elia AE, Wilker E, Yaffe MB. Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem 2004;279:27059– 27068.

    Article  PubMed  CAS  Google Scholar 

  41. Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ. Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc Natl Acad Sci USA 1997;94:7337–7342.

    Article  PubMed  CAS  Google Scholar 

  42. Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 2001;15:1419–1426.

    Article  PubMed  CAS  Google Scholar 

  43. Yujiri T, Sather S, Fanger GR, Johnson GL. Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science 1998;282:1911–1914.

    Article  PubMed  CAS  Google Scholar 

  44. Xia Y, Makris C, Su B, Li E, Yang J, Nemerow GR, Karin M. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA 2000;97:5243–5248.

    Article  PubMed  CAS  Google Scholar 

  45. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, and Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 1999;13:1297–1308.

    Article  PubMed  CAS  Google Scholar 

  46. Hambleton J, Weinstein SL, Lem L, DeFranco AL. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 1996;93:2774–2778.

    Article  PubMed  CAS  Google Scholar 

  47. Shanley TP, Vasi N, Denenberg A, and Wong HR. The serine/threonine phosphatase, PP2A: endogenous regulator of inflammatory cell signaling. J Immunol 2001;166:966–972.

    PubMed  CAS  Google Scholar 

  48. Burack WR, Shaw AS. Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 2000;12:211–216.

    Article  PubMed  CAS  Google Scholar 

  49. Kolch W, Calder M, Gilbert D. When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett 2005;579:1891–1895.

    Article  PubMed  CAS  Google Scholar 

  50. Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005;6:827–837.

    Article  PubMed  CAS  Google Scholar 

  51. Thompson N, Lyons J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr Opin Pharmacol 2005;5:350–356.

    Article  PubMed  CAS  Google Scholar 

  52. Chen W, Monick MM, Carter AB, Hunninghake GW. Activation of ERK2 by respiratory syncytial virus in A549 cells is linked to the production of interleukin 8. Exp Lung Res 2000;26:13–26.

    Article  PubMed  CAS  Google Scholar 

  53. Cori GT CC. The enzymatic conversion of phosphorylase b to a. J Biol Chem 1945;158:321–332.

    Google Scholar 

  54. Fischer EH, Krebs EG. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 1955;216.

    Google Scholar 

  55. Shanley TP. Phosphatases: counterregulatory role in inflammatory cell signaling. Crit Care Med 2002;30:S80–S88.

    Article  CAS  Google Scholar 

  56. Schillace RV, Scott JD. Organization of kinases, phosphatases, and receptor signaling complexes. J Clin Invest 1999;103:761–765.

    Article  PubMed  CAS  Google Scholar 

  57. Mumby MC, Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 1993; 73:673–699.

    PubMed  CAS  Google Scholar 

  58. Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 1998;27:133–164.

    Article  PubMed  CAS  Google Scholar 

  59. Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004;84:1–39.

    Article  PubMed  CAS  Google Scholar 

  60. Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994;77:325–328.

    Article  PubMed  CAS  Google Scholar 

  61. Galadari S, Kishikawa K, Kamibayashi C, Mumby MC, Hannun YA. Purification and characterization of ceramide-activated protein phosphatases. Biochemistry 1998;37:11232–11238.

    Article  PubMed  CAS  Google Scholar 

  62. Chung H, Brautigan DL. Protein phosphatase 2A suppresses MAP kinase signalling and ectopic protein expression. Cell Signal 1999; 11:575–580.

    Article  PubMed  CAS  Google Scholar 

  63. Sontag E, Sontag JM, Garcia A. Protein phosphatase 2A is a critical regulator of protein kinase C zeta signaling targeted by SV40 small t to promote cell growth and NF-κB activation. EMBO J 1997;16: 5662–5671.

    Article  PubMed  CAS  Google Scholar 

  64. Al-Murrani SW, Woodgett JR, Damuni Z. Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. Biochem J 1999;341:293–298.

    Article  PubMed  CAS  Google Scholar 

  65. Shanley TP, Vasi N, Denenberg A, Wong HR. The serine/threonine phosphatase, PP2A: endogenous regulator of inflammatory cell signaling. J Immunol 2001;166:966–972.

    PubMed  CAS  Google Scholar 

  66. Sun SC, Maggirwar SB, Harhaj E. Activation of NF-kappa B by phosphatase inhibitors involves the phosphorylation of I kappa B alpha at phosphatase 2A-sensitive sites. J Biol Chem 1995;270:18347–18351.

    Article  PubMed  CAS  Google Scholar 

  67. Bitko V, Barik S. Persistent activation of RelA by respiratory syncytial virus involves protein kinase C, underphosphorylated IκBβ, and sequestration of protein phosphatase 2A by the viral phosphoprotein. J Virol 1998;72:5610–5618.

    PubMed  CAS  Google Scholar 

  68. Kray AE, Carter RS, Pennington KN, Gomez RJ, Sanders LE, Llanes JM, Khan WN, Ballard DW, Wadzinski BE. Positive regulation of IκB kinase signaling by protein serine/threonine phosphatase 2A. J Biol Chem 2005;280:35974–35982.

    Article  PubMed  CAS  Google Scholar 

  69. Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 2000;14: 6–16.

    PubMed  CAS  Google Scholar 

  70. Keyse SM. Protein phosphatases and the regulation of mitogen- activated protein kinase signalling. Curr Opin Cell Biol 2000;12: 186–192.

    Article  PubMed  CAS  Google Scholar 

  71. Nimah M, Zhao B, Denenberg AG, Bueno O, Molkentin J, Wong HR, Shanley TP. Contribution of MKP-1 regulation of p38 to endotoxin tolerance. Shock 2005;23:80–87.

    Article  PubMed  CAS  Google Scholar 

  72. Groom LA, Sneddon AA, Alessi DR, Dowd S, and Keyse SM. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J 1996;15:3621–3632.

    PubMed  CAS  Google Scholar 

  73. Brondello JM, Pouyssegur J, McKenzie FR. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 1999;286:2514–2517.

    Article  PubMed  CAS  Google Scholar 

  74. Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 1998;280: 1262–1265.

    Article  PubMed  CAS  Google Scholar 

  75. Geanacopoulos M. An introduction to RNA-mediated gene silencing. Sci Prog 2005;88:49–69.

    Article  PubMed  Google Scholar 

  76. Guhaniyogi J, Brewer G. Regulation of mRNA stability in mammalian cells. Gene 2001;265:11–23.

    Article  PubMed  CAS  Google Scholar 

  77. Wilson GM, Sutphen K, Chuang K, Brewer G. Folding of A+U-rich RNA elements modulates AUF1 binding. Potential roles in regulation of mRNA turnover. J Biol Chem 2001;276:8695–8704.

    CAS  Google Scholar 

  78. Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 1999;19:4311–4323.

    PubMed  CAS  Google Scholar 

  79. Dean JL, Wait R, Mahtani KR, Sully G, Clark AR, Saklatvala J. The 3’ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol 2001; 21:721–730.

    Article  PubMed  CAS  Google Scholar 

  80. Carter AB, Monick MM, Hunninghake GW. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol 1999;20:751–758.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Cornell, T.T., Shanley, T.P. (2009). Signal Transduction Pathways in Critical Illness and Injury. In: Wheeler, D., Wong, H., Shanley, T. (eds) Science and Practice of Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-84800-921-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-921-9_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-920-2

  • Online ISBN: 978-1-84800-921-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics