Skip to main content

Abstract

This chapter deals with spindle technologies for machine tools. The machine tool spindle provides the relative motion between the cutting tool and the workpiece which is necessary to perform a material removal operation. In turning, it is the physical link between the machine tool structure and the workpiece, while in processes like milling, drilling or grinding, it links the structure and the cutting tool. Therefore, the characteristics of the spindle, such as power, speed, stiffness, bearings, drive methods or thermal properties, amongst others, have a huge impact on machine tool performance and the quality of the end product. Machining requirements differ greatly from one sector to another in terms of materials, cutting tools, processes and parameters. Nowadays, the spindle industry provides a large variety of configurations and options in order to meet the needs of different industries. Therefore, it is crucial that companies correctly identify their machining requirements and make well-informed decisions about which spindle to acquire. In this chapter, some of the main spindle characteristics that are the basis of a wellinformed decision regarding spindles are introduced and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abele E, Kreis M, Roth M (2006) Electromagnetic actuator for in process non-contact identification of spindle-tool frequency response functions, CIRP 2nd Int Conference on HPC Machining, Vancouver, Canada

    Google Scholar 

  2. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling, Annals of the CIRP 44/1:357–362

    Google Scholar 

  3. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding, Keynote paper, Annals of the CIRP 53/2:619–652

    Google Scholar 

  4. Arnone M (1998) High Performance Machining. Cincinnati, USA: Hanser Gardner Publications

    Google Scholar 

  5. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis, J of Manufact Sci Engineer 125:220–225

    Article  Google Scholar 

  6. Bediaga I, Egaña I, Muñoa J, Zatarain M, Lopez de Lacalle LN (2007) Chatter avoidance method for milling process based on sinusoidal spindle speed variation method: simulation and experimental results, 10th CIRP Int Workshop on Modelling of Machining Operations, August 27–28, Reggia Calabria, Italy

    Google Scholar 

  7. Budak E, Altintas Y (1998) Analytical prediction of the chatter stability in milling – Part I: General formulation, J of Dynam Syst Measure Contr 120:22–30

    Article  Google Scholar 

  8. Cao Y, Altintas Y (2007) Modelling of spindle-bearing and machine tool systems for virtual simulation of milling operations, Int J of Mach Tool Manufact 47:1342–1350

    Article  Google Scholar 

  9. Insperger T, Stépán G (2000) Stability of high-speed milling, Proceedings of Symposium on Nonlinear Dynamics and Stochastic Mechanics, Orlando

    Google Scholar 

  10. López de Lacalle, LN, Sánchez JA, Lamikiz A (2004) Mecanizado de Alto Rendimiento. Procesos de Arranque (in Spanish, High performance machining). 1a ed. Bilbao: Ediciones Técnicas Izaro, S.A

    Google Scholar 

  11. Merrit H (1965) Theory of self-excited machine tool chatter, J of Engineer Indust 87: 447–454

    Google Scholar 

  12. meweb.ecn.purdue.edu/∼simlink/welcome.html

    Google Scholar 

  13. Popoli W (2000) Spindle bearing basics, Manufacturing Engineering, Nov 2000

    Google Scholar 

  14. Rantatalo M, Aidanpää J, Göransson, Norman P (2007) Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement, Int J of Mach Tool Manufact 47:1034–1045

    Article  Google Scholar 

  15. Salgado M, López de Lacalle LN, Lamikiz A, Muñoa M, Sánchez JA (2005) Evaluation of the stiffness chain on the deflection of end-mills under cutting forces. International Journal of Machine Tools and Manufacture, Vol. 45, pp. 727–739

    Article  Google Scholar 

  16. Shin YC (1992) Bearing nonlinearity and stability analysis in high speed machining, J of Engineer Indust 114:23–30

    Google Scholar 

  17. Tlusty J, Ismail F (1981) Basic non-linearity in machining chatter, Annals of the CIRP 30/1:299–304

    Google Scholar 

  18. Tobias SA, Fishwisck W (1958) A theory of regenerative chatter, The Engineer, London

    Google Scholar 

  19. Wang KW, Shin YC, Chen CH (1991) On the natural frequencies of high-speed spindles with angular contact bearings, Proc Instn Mech Engrs 205:147–154

    Google Scholar 

  20. Weck M, Hennes N, Krell M (1999) Spindle and toolsystems with high damping, Annals of the CIRP 48: 297–302

    Google Scholar 

  21. Weck, M, Koch, A (1993) Spindle-Bearing Systems for High-Speed Applications in Machine Tools, Annals of the CIRP 42/1:445–448

    Article  Google Scholar 

  22. Weck, M, McKeown, P, Bonse, R, Herbst, U (1995) Reduction and Compensation of Thermal Errors in Machine Tools, Keynote paper, Annals of the CIRP 44/2:589–598

    Google Scholar 

  23. Weck M (1984) Handbook of Machine Tools Volume 1: Types of Machines, Forms of Construction and Applications, John Wiley & Sons

    Google Scholar 

  24. Weck M (1984) Handbook of Machine Tools Volume 2: Construction and Mathematical Analysis, John Wiley & Sons

    Google Scholar 

  25. www.malinc.com

    Google Scholar 

  26. www.mfg-labs.com

    Google Scholar 

  27. Zatarain M, Muñoa J, Peigne G, Insperger T (2006) Analysis of the influence of mill helix angle on chatter stability, Annals of the CIRP 55/1:365–368

    Google Scholar 

  28. Zulaika JJ, Azkoitia JM, Rodríguez M, Azpiazu P, Garate A (2002) Diseño de una gama de electromandrinos de alta velocidad (in Spanish, Design of a high speed electrospindles family), Proceedings of the XIV Congreso de Máquinas-Herramienta y Tecnologías de Fabricación, 2:831-850, ISBN: 931828-5-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

de Ciurana, J., Quintana, G., Campa, F. (2009). Machine Tool Spindles. In: López de Lacalle, L., Lamikiz, A. (eds) Machine Tools for High Performance Machining. Springer, London. https://doi.org/10.1007/978-1-84800-380-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-380-4_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-379-8

  • Online ISBN: 978-1-84800-380-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics