Skip to main content

Randall’s Plaques

  • Chapter
  • First Online:
Urinary Tract Stone Disease

Abstract

First described by Alexander Randall in the 1930s, carbapatite plaques formed in the interstitium of the inner medulla are now a major cause for calcium oxalate stone formation in western countries. At least 50% of all calcium stone formers (and even more than 75% of patients in the United States) exhibit such calcified deposits beneath and at the surface of the papillary epithelium as observed by endoscopic examination of kidney papillae. On the other hand, a majority of spontaneously passed calcium oxalate monohydrate stones exhibit a peculiar morphology suggestive of stone nucleation from a Randall’s plaque. The stones developed from a papillary plaque are easily identified by microscopic examination due to the presence of a concave, depressed zone (“umbilication”) at their surface, which corresponds to the attachment site at the tip of the papilla. The origin of the calcified deposits is the basement membrane of the deep thin Henle’s loops. Calcium phosphate then spreads out through the interstitium of the inner medulla. The mechanisms involved in the formation of these plaques are not yet entirely clarified. Metabolic examination of urine suggests a predominant role of hypercalciuria in concordance with a high urine pH and a high phosphate concentration in the interstitium and a possible link with diet. Low diuresis is another factor often found in patients who exhibit stones developed from a Randall’s plaque. As observed by electron microscopy from both tissue and stones, it appears that Randall’s plaques may extend around the vasa recta and collecting ducts, which may be pulled out of the tissue when the stone breaks away from the papilla.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    OT, personal unpublished data

References

  1. Randall A. An hypothesis for the origin of renal calculus. N Engl J Med. 1936;214:234-237.

    Article  Google Scholar 

  2. Randall A. The origin and growth of renal calculi. Ann Surg. 1937;105:1009-1027.

    Article  CAS  PubMed  Google Scholar 

  3. Randall A. Papillary pathology as a precursor of primary renal calculus. J Urol. 1940;44:580-589.

    CAS  Google Scholar 

  4. Rosenow EC Jr. Renal calculi: study of papillary calcification. J Urol. 1940;44:19-23.

    Google Scholar 

  5. Anderson WAD. Renal calcification in adults. J Urol. 1940;44:29-34.

    Google Scholar 

  6. Vermooten V. The incidence and significance of the deposition of calcium plaques in the renal papilla as observed in the Caucasian and Bantu population in South Africa. J Urol. 1941;46:193-196.

    CAS  Google Scholar 

  7. Vermooten V. Origin and development in renal papilla of Randall’s calcium plaques. J Urol. 1942;48:27-37.

    CAS  Google Scholar 

  8. Cifuentes Delatte L, Minon-Cifuentes JL, Medina JA. New studies on papillary calculi. J Urol. 1987;137:1024-1029.

    CAS  PubMed  Google Scholar 

  9. Cifuentes Delatte L, Minon-Cifuentes JL, Medina JA. Papillary stones: calcified renal tubules in Randall’s plaques. J Urol. 1985;133:490-494.

    CAS  PubMed  Google Scholar 

  10. Daudon M, Traxer O, Jungers P, Bazin D. Stone morphology suggestive of Randall’s plaque. In: Evan AP, Lingeman JE, Williams JC Jr, eds. Renal Stone Disease. Melville, NY: American Institute of Physics Conference Proceedings; 2007; 900:26-34.

    Google Scholar 

  11. Daudon M. Epidemiology of nephrolithiasis in France. Ann Urol (Paris). 2005;39:209-231.

    CAS  Google Scholar 

  12. Low RK, Stoller ML. Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol. 1997;158:2062-2064.

    Article  CAS  PubMed  Google Scholar 

  13. Matlaga BR, Williams JC Jr, Kim SC, et al. Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol. 2006;175:1720-1724.

    Article  PubMed  Google Scholar 

  14. Kim SC, Coe FL, Tinmouth WW, et al. Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol. 2005;173:117-119.

    Article  CAS  PubMed  Google Scholar 

  15. Ruggera L, Chiodini S, Gambaro G, et al. Does Randall’s plaque represent a necessary condition in the pathogenesis of the idiopathic calcium oxalate stones? Urol Res. 2008;36:162-163 (A).

    Google Scholar 

  16. Evan AP, Lingeman JE, Coe FL, et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003;111:607-616.

    CAS  PubMed  Google Scholar 

  17. Matlaga BR, Coe FL, Evan AP, et al. The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol. 2007;177:31-38.

    Article  PubMed  Google Scholar 

  18. Evan AP, Coe FL, Lingeman JE, et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken). 2007;290:1315-1323.

    CAS  Google Scholar 

  19. Evan AP, Coe FL, Rittling SR, et al. Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int. 2005;68:145-154.

    Article  CAS  PubMed  Google Scholar 

  20. Evan AP, Bledsoe S, Worcester EM, et al. Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int. 2007;72:1503-1511.

    Article  CAS  PubMed  Google Scholar 

  21. Evan A, Lingeman J, Coe FL, et al. Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 2006;69:1313-1318.

    Article  CAS  PubMed  Google Scholar 

  22. Evan AP, Lingeman JE, Coe FL, et al. Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol. 2008;28:111-119.

    Article  CAS  PubMed  Google Scholar 

  23. Evan AP, Lingeman JE, Coe FL, et al. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int. 2005;67:576-581.

    Article  CAS  PubMed  Google Scholar 

  24. Evan AE, Lingeman JE, Coe FL, et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int. 2008;74:223-229.

    Article  CAS  PubMed  Google Scholar 

  25. Meyer JL, Bergert JH, Smith LH. Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate-hydroxyapatite system. Clin Sci Mol Med. 1975;49:369-374.

    CAS  PubMed  Google Scholar 

  26. Khan SR. Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol. 1997;157:376-383.

    Article  CAS  PubMed  Google Scholar 

  27. Williams JC Jr, Matlaga BR, Kim SC, et al. Calcium oxalate calculi found attached to the renal papilla: Preliminary evidence for early mechanisms in stone formation. J Endourol. 2006;20:885-890.

    Article  PubMed  Google Scholar 

  28. Zarse CA, Hameed TA, Jackson ME, et al. CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro. Urol Res. 2007;35:201-206.

    Article  PubMed  Google Scholar 

  29. Zarse CA, McAteer JA, Sommer AJ, et al. Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol. 2004;4:15.

    Article  PubMed  Google Scholar 

  30. Kuo RL, Lingeman JE, Evan AP, et al. Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int. 2003;64:2150-2154.

    Article  PubMed  Google Scholar 

  31. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest. 2005;115:2598-2608.

    Article  CAS  PubMed  Google Scholar 

  32. Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int. 2001;59:2290-2298.

    CAS  PubMed  Google Scholar 

  33. Daudon M, Hennequin C, Boujelben G, et al. Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney Int. 2005;67:1934-1943.

    Article  PubMed  Google Scholar 

  34. Bushinsky DA. Nephrolithiasis: site of the initial solid phase. J Clin Invest. 2003;111:602-605.

    CAS  PubMed  Google Scholar 

  35. Sepe V, Adamo G, La Fianza A, et al. Henle loop basement membrane as initial site for Randall plaque formation. Am J Kidney Dis. 2006;48:706-711.

    Article  CAS  PubMed  Google Scholar 

  36. Halperin ML, Cheema Dhadli S, Kamel KS. Physiology of acid-base balance: links with kidney stone prevention. Semin Nephrol. 2006;26:441-446.

    Article  CAS  PubMed  Google Scholar 

  37. Hansell P, Goransson V, Odlind C, Gerdin B, Hallgren R. Hyaluronan content in the kidney in different states of body hydration. Kidney Int. 2000;58:2061-2068.

    Article  CAS  PubMed  Google Scholar 

  38. Verkoelen CF. Crystal retention in renal stone disease: a crucial role for the glycosaminoglycan hyaluronan? J Am Soc Nephrol. 2006;17:1673-1687.

    Article  CAS  PubMed  Google Scholar 

  39. Verkoelen CF. Hyaluronan in tubular and interstitial nephrocalcinosis. In: Evan AP, Lingeman JE, Williams JC Jr, eds. Renal Stone Disease. Melville, NY: American Institute of Physics Conference Proceedings; 2007; 900:57-63.

    Google Scholar 

  40. Knepper MA, Saidel GM, Hascall VC, et al. Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol Renal Physiol. 2003;284:F433-446.

    CAS  PubMed  Google Scholar 

  41. Raoult D, Drancourt M, Azza S, et al. Nanobacteria are mineralo fetuin complexes. PLoS Pathog. 2008;4:e41.

    Article  PubMed  Google Scholar 

  42. Gambaro G, D’Angelo A, Fabris A, et al. Crystals, Randall’s plaques and renal stones: do bone and atherosclerosis teach us something? J Nephrol. 2004;17:774-777.

    PubMed  Google Scholar 

  43. Daudon M, Bader CA, Jungers P. Urinary Calculi: Review of classification methods and correlations with etiology. Scanning Microsc. 1993;7:1081-1106.

    CAS  PubMed  Google Scholar 

  44. Estépa L, Daudon M. Contribution of Fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy. 1997;3:347-369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Daudon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Daudon, M., Traxer, O., Williams, J.C., Bazin, D.C. (2010). Randall’s Plaques. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics