Skip to main content

Physicochemical Aspects of Uro-crystallization and Stone Formation

  • Chapter
  • First Online:
Urinary Tract Stone Disease

Abstract

Urinary stones are predominantly crystalline and the precipitation of uro-crystals must obey the physical-chemical principles applicable to crystallization in a broader sense. Key amongst these is the requirement for supersaturation to be generated, providing the necessary thermodynamic driving force for crystallization. The three main processes of nucleation, growth, and aggregation are all dependent on the degree of supersaturation. Nucleation of uro-crystals will be heterogeneous (occurring at a surface) and can only be sustained at a supersaturation above the equilibrium condition. Once nucleation has occurred, growth and aggregation can proceed until a saturated equilibrium is achieved, although in the continuous flow of the urinary system the supersaturation may be maintained by replenishment with fresh solute. A new crystallization process has recently been recognized involving the ordered clustering of nanocrystals, which brings together elements of nucleation, growth, and aggregation. The relevance of this to uro-crystallization is not yet clear. Of established significance is the presence of crystallization inhibitors and promoters in urine. These might act through changes in supersaturation or directly at the interface between crystals and solution or crystals and their nucleating substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a:

activity

Δa :

activity driving force (supersaturation)

A :

pre-exponential factor (in Arrhenius reaction rate equation)

c :

concentration

Δc :

concentration driving force (supersaturation)

CaOx:

calcium oxalate (crystalline)

ΔG :

Gibbs energy change

ΔG het :

Gibbs energy change for heterogeneous nucleation

ΔG hom :

Gibbs energy change for homogeneous nucleation

ΔG s :

Gibbs energy change for production of new crystal surface

ΔG v :

Gibbs energy change for production of new crystal volume

ΔG crit :

Gibbs energy change for production of a critical nucleus

g :

growth rate

I :

ionic strength

J :

nucleation rate

k :

growth rate constant

k sp :

solubility product

k :

Boltzmann constant

FP :

formation product

L :

particle size

L crit :

size of critical nucleus

M :

strength factor of aggregation bridge

ML:

metastable limit

N:

Avogadro’s number

n :

growth rate reaction order

pK a :

-log (acid dissociation constant)

r :

radius

r crit :

radius of critical nucleus

R :

gas constant

R agg :

aggregation rate

R coll :

aggregate collision rate

R con :

aggregate consolidation rate

R disp :

aggregate dispersion rate

S :

supersaturation ratio

T :

absolute temperature

v m :

molecular volume

(x):

concentration of species x

[x]:

activity of species x

z :

valency

α :

volume shape factor

β :

surface shape factor

γ :

activity coefficient

γ Ss :

interfacial energy (between substratum and solution phase)

γ cs :

interfacial energy (between crystal and solution phase)

γ Sc :

interfacial energy (between substratum and crystal phase)

θ :

contact angle

μ 0 :

chemical potential at the standard state

μ :

chemical potential

Δμ :

thermodynamic driving force

σ :

relative supersaturation

Ï„ :

induction time

Φ :

reaction affinity (positive form of Δμ)

Φ /N :

reaction affinity per molecule

Ï• :

heteronucleation factor

Ψ :

aggregation efficiency factor

c:

crystals

eq:

equilibrium

s:

solution

S:

substratum

References

  1. Sohnel O, Garside J. Precipitation. In: Basic Principles and Industrial Applications. Oxford: Butterworth-Heinemann Ltd; 1992.

    Google Scholar 

  2. Mullin JW. Crystallization. 3rd ed. Oxford: Butterworth-Heinemann Ltd; 1993.

    Google Scholar 

  3. Finlayson B. Physicochemical aspects of urolithiasis. Kidney Int. 1978;13:344–360.

    Article  CAS  PubMed  Google Scholar 

  4. Wu WJ, Nancollas GH. Determination of interfacial tension from crystallization and dissolution data: a comparison with other methods. Adv Coll Interface Sci. 1999;79:229–279.

    Article  CAS  Google Scholar 

  5. Wang LJ, Nancollas GH. Calcium orthophosphates: crystallization and dissolution. Chem Rev. 2008;108:4628–4669.

    Article  CAS  PubMed  Google Scholar 

  6. Kok D. Clinical implications of physicochemistry of stone formation. Endocrinol Metab Clin N Am. 2002;31:855.

    Article  CAS  Google Scholar 

  7. Kavanagh JP. Supersaturation and renal precipitation: the key to stone formation? Urol Res. 2006;34:81–85.

    Article  PubMed  Google Scholar 

  8. Kavanagh JP. Methods for the study of calcium-oxalate crystallization and their application to urolithiasis research. Scan Microsc. 1992;6:685–705.

    CAS  Google Scholar 

  9. Kavanagh JP. In vitro calcium oxalate crystallization methods. Urol Res. 2006;34:139–145.

    Article  CAS  PubMed  Google Scholar 

  10. Streit J, Tran-Ho LC, Konigsberger E. Solubility of the three calcium oxalate hydrates in sodium chloride solutions and urine-like liquors. Monatshefte Chem. 1998;129:1225–1236.

    CAS  Google Scholar 

  11. Pak CYC, Holt K. Nucleation and growth of brushite and calcium-oxalate in urine of stone-formers. Metab-Clin Exp. 1976;25:665–673.

    CAS  PubMed  Google Scholar 

  12. Pak CYC, Rodgers K, Poindexter JR, et al. New methods of assessing crystal growth and saturation of brushite in whole urine: effect of pH, calcium and citrate. J Urol. 2008;180:1532–1537.

    Article  CAS  PubMed  Google Scholar 

  13. Werness PG, Brown CM, Smith LH, et al. Equil2 – a basic computer-program for the calculation of urinary saturation. J Urol. 1985;134:1242–1244.

    CAS  PubMed  Google Scholar 

  14. Laube N, Rodgers A, Allie-Hamdulay S, et al. Calcium oxalate stone formation risk – a case of disturbed relative concentrations of urinary components. Clini Chem Lab Med. 2008;46:1134–1139.

    Article  CAS  Google Scholar 

  15. Rodgers A, Allie-Hamdulay S, Jackson G. Therapeutic action of citrate in urolithiasis explained by chemical speciation: increase in pH is the determinant factor. Nephrol Dial Transplant. 2006;21:361–369.

    Article  CAS  PubMed  Google Scholar 

  16. Grases F, Villacampa AI, Sohnel O, et al. Phosphate composition of precipitates from urine-like liquors. Crystal Res Technol. 1997;32:707–715.

    Article  CAS  Google Scholar 

  17. Rodgers AL, Allie-Hamdulay S, Jackson GE. JESS: what can it teach us? Renal Stone Dis. 2007;900:183–191.

    Google Scholar 

  18. Pak CYC, Moe OW, Maalouf NM, et al. Comparison of semi-empirical and computer derived methods for estimating urinary saturation of brushite. J Urol. 2009;181:1423–1428.

    Article  PubMed  Google Scholar 

  19. Tiselius HG. Aspects on estimation of the risk of calcium-oxalate crystallization in urine. Urol Int. 1991;47:255–259.

    Article  CAS  PubMed  Google Scholar 

  20. Tiselius HG, Ferraz RRN, Heilberg IP. An approximate estimate of the ion-activity product of calcium oxalate in rat urine. Urol Res. 2003;31:410–413.

    Article  CAS  PubMed  Google Scholar 

  21. Tiselius HG. A simplified estimate of the ion-activity product of calcium-phosphate in urine. Eur Urol. 1984;10:191–195.

    CAS  PubMed  Google Scholar 

  22. Ogawa Y, Hatano T. Comparison of the Equil2 program and other methods for estimating the ion-activity product of urinary calcium oxalate: a new simplified method is proposed. Int J Urol. 1996;3:383–385.

    Article  CAS  PubMed  Google Scholar 

  23. Grover PK, Marshall VR, Ryall RL. Dissolved urate salts out calcium oxalate in undiluted human urine in vitro: Implications for calcium oxalate stone genesis. Chem Biol. 2003;10:271–278.

    Article  CAS  PubMed  Google Scholar 

  24. Grover PK, Ryall RL. Critical appraisal of salting-out and its implications for chemical and biological sciences. Chem Rev. 2005;105:1–10.

    Article  CAS  PubMed  Google Scholar 

  25. Nancollas GH, Wu WJ. Biomineralization mechanisms: a kinetics and interfacial energy approach. J Crystal Growth. 2000;211:137–142.

    Article  CAS  Google Scholar 

  26. Lonsdale K. Epitaxy as a growth factor in urinary calculi and gallstones. Nature. 1968;217:56–.

    Article  CAS  PubMed  Google Scholar 

  27. Grases F, Costa-Bauza A, Ramis M, et al. Simple classification of renal calculi closely related to their micromorphology and etiology. Clin Chim Acta. 2002;322:29–36.

    Article  CAS  PubMed  Google Scholar 

  28. Kavanagh JP. Enlargement of a lower pole calcium oxalate stone: a theoretical examination of the role of crystal nucleation, growth, and aggregation. J Endourol. 1999;13:605–610.

    Article  CAS  PubMed  Google Scholar 

  29. Sohnel O, Grases F, March JG. Experimental-technique simulating oxalocalcic renal stone generation. Urol Res. 1993;21:95–99.

    Article  CAS  PubMed  Google Scholar 

  30. Wu WJ, Gerard DE, Nancollas GH. Nucleation at surfaces: the importance of interfacial energy. J Am Soc Nephrol. 1999;10:S355–S358.

    PubMed  Google Scholar 

  31. El-Shall H, Jeon JH, Abdel-Aal EA, et al. A study of primary nucleation of calcium oxalate monohydrate: II. Effect of urinary species. Crystal Res Technol. 2004;39:222–229.

    Article  CAS  Google Scholar 

  32. Curreri PA, Onoda G, Finlayson B. A comparative appraisal of adsorption of citrate on whewellite seed crystals. J Crystal Growth. 1981;53:209–214.

    Article  CAS  Google Scholar 

  33. Nancollas GH, Gardner GL. Kinetics of crystal growth of calcium oxalate monohydrate. J Crystal Growth. 1974;21:267–276.

    Article  CAS  Google Scholar 

  34. Nancollas GH, Smesko SA, Campbell AA, et al. Physical-chemical studies of calcium-oxalate crystallization. Am J Kidney Dis. 1991;17:392–395.

    CAS  PubMed  Google Scholar 

  35. Zauner R, Jones AG. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system. Chem Eng Sci. 2000;55:4219–4232.

    Article  CAS  Google Scholar 

  36. Skrtic D, Markovic M, Komunjer L, et al. Precipitation of calcium oxalates from high ionic-strength solutions. 1. Kinetics of spontaneous precipitation of calcium-oxalate trihydrate. J Crystal Growth. 1984;66:431–440.

    Article  CAS  Google Scholar 

  37. Gvozdev NV, Petrova EV, Chernevich TG, et al. Atomic force microscopy of growth and dissolution of calcium oxalate monohydrate (COM) crystals. J Crystal Growth. 2004;261:539–548.

    Article  CAS  Google Scholar 

  38. Guo SW, Ward MD, Wesson JA. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir. 2002;18:4284–4291.

    Article  CAS  Google Scholar 

  39. Finlayson B. Concept of a continuous crystallizer – its theory and application to in-vivo and in-vitro urinary-tract models. Investig Urol. 1972;9:258–263.

    CAS  Google Scholar 

  40. Robertson WG, Scurr DS, Bridge CM. Factors influencing the crystallization of calcium-oxalate in urine – critique. J Crystal Growth. 1981;53:182–194.

    Article  CAS  Google Scholar 

  41. Zhang JW, Nancollas GH. Kink density and rate of step movement during growth and dissolution of an AB crystal in a nonstoichiometric solution. J Colloid Interface Sci. 1998;200:131–145.

    Article  CAS  Google Scholar 

  42. Chernov AA, Rashkovich LN, Vekilov PG. Steps in solution growth: dynamics of kinks, bunching and turbulence. J Crystal Growth. 2005;275:1–18.

    Article  Google Scholar 

  43. Chernov AA, Petrova E, Rashkovich LN. Dependence of the CaOx and MgOx growth rate on solution stoichiometry. Non-Kossel crystal growth. J Crystal Growth. 2006;289:245–254.

    Article  CAS  Google Scholar 

  44. Kavanagh JP, Jones L, Rao PN. Calcium oxalate crystallization kinetics at different concentrations of human and artificial urine, with a constant calcium to oxalate ratio. Urol Res. 1999;27:231–237.

    Article  CAS  PubMed  Google Scholar 

  45. Pak CYC, Adams-Huet B, Poindexter JR, et al. Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 2004;66:2032–2037.

    Article  CAS  PubMed  Google Scholar 

  46. Kok DJ, Khan SR. Calcium-oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 1994;46:847–854.

    Article  CAS  PubMed  Google Scholar 

  47. Saw NK, Rao PN, Kavanagh JP. A nidus, crystalluria and aggregation: key ingredients for stone enlargement. Urol Res. 2008;36:11–15.

    Article  CAS  PubMed  Google Scholar 

  48. Falope GO, Jones AG, Zauner R. On modelling continuous agglomerative crystal precipitation via Monte Carlo simulation. Chem Eng Sci. 2001;56:2567–2574.

    Article  CAS  Google Scholar 

  49. Bramley AS, Hounslow MJ, Ryall RL. Aggregation during precipitation from solution: A method for extracting rates from experimental data. J Coll Interface Sci. 1996;183:155–165.

    Article  CAS  Google Scholar 

  50. Liew TL, Barrick JP, Hounslow MJ. A micro-mechanical model for the rate of aggregation during precipitation from solution. Chem Eng Technol. 2003;26:282–285.

    Article  CAS  Google Scholar 

  51. David R, Espitalier F, Cameirao A, et al. Developments in the understanding and modeling of the agglomeration of suspended crystals in crystallization from solution. KONA. 2001;21:40–53.

    Google Scholar 

  52. Andreassen JP, Hounslow MJ. Growth and aggregation of vaterite in seeded-batch experiments. AlChE J. 2004;50:2772–2782.

    CAS  Google Scholar 

  53. Linnikov OD. Mechanism of aggregation and intergrowth of crystals during bulk crystallization from solutions. Crystal Res Technol. 2008;43:1268–1277.

    Article  CAS  Google Scholar 

  54. Ryall RL. The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny. Urol Res. 2008;36:77–97.

    Article  PubMed  Google Scholar 

  55. Navrotsky A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc Natl Acad Sci USA. 2004;101:12096–12101.

    Article  CAS  PubMed  Google Scholar 

  56. Colfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed. 2005;44:5576–5591.

    Article  Google Scholar 

  57. Niederberger M, Colfen H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys. 2006;8:3271–3287.

    Article  CAS  PubMed  Google Scholar 

  58. Xu AW, Ma YR, Colfen H. Biomimetic mineralization. J Mater Chem. 2007;17:415–449.

    Article  CAS  Google Scholar 

  59. Kulak AN, Iddon P, Li YT, et al. Continuous structural evolution of calcium carbonate particles: A unifying model of copolymer-mediated crystallization. J Am Chem Soc. 2007;129:3729–3736.

    Article  CAS  PubMed  Google Scholar 

  60. Webber D, Chauvet MC, Ryall RL. Proteolysis and partial dissolution of calcium oxalate: a comparative, morphological study of urinary crystals from black and white subjects. Urol Res. 2005;33:273–284.

    Article  CAS  PubMed  Google Scholar 

  61. Sandersius S, Rez P. Morphology of crystals in calcium oxalate monohydrate kidney stones. Urol Res. 2007;35:287–293.

    Article  CAS  PubMed  Google Scholar 

  62. Dorian HH, Rez P, Drach GW. Evidence for aggregation in oxalate stone formation: Atomic force and low voltage scanning electron microscopy. J Urol. 1996;156:1833–1837.

    Article  CAS  PubMed  Google Scholar 

  63. Ryall RL, Chauvet MC, Grover PK. Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU Int. 2005;96:654–663.

    Article  CAS  PubMed  Google Scholar 

  64. Ryall RL, Cook AF, Thurgood LA, et al. Macromolecules relevant to stone formation. Renal Stone Disease. 2007;900:129–140.

    CAS  Google Scholar 

  65. Touryan LA, Lochhead MJ, Marquardt BJ, et al. Sequential switch of biomineral crystal morphology using trivalent ions. Nat Mater. 2004;3:239–243.

    Article  CAS  PubMed  Google Scholar 

  66. Fasano JM, Khan SR. Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: An in vitro study. Kidney Int. 2001;59:169–178.

    Article  CAS  PubMed  Google Scholar 

  67. Khan SR. Heterogeneous nucleation of calcium-oxalate crystals in mammalian urine. Scan Microsc. 1995;9:597–616.

    CAS  Google Scholar 

  68. Guan XY, Wang LJ, Dosen A, et al. An understanding of renal stone development in a mixed oxalate-phosphate system. Langmuir. 2008;24:7058–7060.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Kavanagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Kavanagh, J.P. (2010). Physicochemical Aspects of Uro-crystallization and Stone Formation. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics