Skip to main content

Extracorporeal Shock Wave Lithotriptors

  • Chapter
  • First Online:
Urinary Tract Stone Disease

Abstract

After clinical introduction in 1980, extracorporeal shock wave lithotripsy (ESWL) became the primary choice of treatment for most urinary stones within less than 10 years. Stone disintegration and passage of fragments are influenced by technical demands on the lithotripter and clinical prerequisites on behalf of the patient and surgeon. There are no standardized parameters to characterize shock waves physically or to define their optimal configuration. Primarily there is the discussion about the size of focal zone and the energy flux within it. Actually, there is a trend to use smaller focal sizes for ureter stones and larger for renal stones without proof by relevant studies. The shock waves disintegrate the calculi in a sequential process by different mechanisms, for example, spallation, squeezing, cavitation induced by microbubbles, and dynamic fatigue. The propagation of the shock wave from the generator through the patient to the stone has to be ensured by optimal acoustic coupling of the waves. The stones have to be positioned precisely in the focal point imaged by fluoroscopy or sonography. Prospective randomized trials proofed that pulse rate should not exceed 90 pulses/min and shock wave energy should be ramped along ESWL session from low to high level up to the limit of applicable shock wave dose (shot number and energy) to improve stone fragmentation and reduce the risk of kidney trauma. After treatment, including retreatment in some cases, the diagnostic tools of radiology and ultrasound define if the stone is “completely” disintegrated and passage of fragments can be expected. In case of incomplete fragmentation, alternative endoscopic treatments have to be respected. The efficiency of lithotripters can be estimated by calculating quotients including stone-free rate, number of retreatments, auxiliary and alternative treatments. This is a nonstandardized possibility to compare different lithotripters additionally to the possibility of in vitro studies and the rare prospective randomized trials.

Meanwhile the number of ESWL-treatments decrease progressively since efficacy and invasiveness of endourological procedures (e.g., ureterorenoscopy and percutaneous litholapaxy) improves more and more. Since the development of new lithotripters did not reach higher success rates in the last 25 years and optimal fragmentation is achieved by ESWL applying high energy in general anesthesia the endoscopic procedures are reasonable alternatives with a higher immediate stone-free rate in even more cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaussy C, Schmiedt E. Extracorporeal shock wave lithotripsy (ESWL) for kidney stones. An alternative to surgery? UrolRadiol. 1984;6:80–87.

    Article  CAS  PubMed  Google Scholar 

  2. Chaussy CG, Fuchs GJ. Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy. JUrol. 1989;141:782–789.

    CAS  PubMed  Google Scholar 

  3. Kaude JV, Williams CM, Millner MR, Scott KN, Finlayson B. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy. AJR AmJRoentgenol. 1985;145:305–313.

    CAS  PubMed  Google Scholar 

  4. Rubin JI, Arger PH, Pollack HM, et al. Kidney changes after extracorporeal shock wave lithotripsy: CT evaluation. Radiology. 1987;162:21–24.

    CAS  PubMed  Google Scholar 

  5. Chow GK, Streem SB. Extracorporeal lithotripsy. Update on technology. UrolClinNorth Am. 2000;27:315–322.

    Article  CAS  PubMed  Google Scholar 

  6. Rassweiler J, Schmidt A, Gumpinger R, Mayer R, Eisenberger F. ESWL for ureteral calculi. Using the Dornier HM 3, HM 3+ and Wolf Piezolith 2,200. JUrol(Paris). 1990;96:149–153.

    CAS  Google Scholar 

  7. Granz B, Kohler G. What makes a shock wave efficient in lithotripsy? JStoneDis. 1992;4:123–128.

    CAS  PubMed  Google Scholar 

  8. Rassweiler JJ, Bergsdorf T, Ginter S, et al. Progress in Lithotripter technology. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU, Wilbert D, eds. Therapeutic Energy Applications in Urology. Standards and recent developments. Stuttgart – Nex York: Thieme; 2005:3–15.

    Google Scholar 

  9. Eisenmenger W. The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol. 2001;27:683–693.

    Article  CAS  PubMed  Google Scholar 

  10. Tailly GG. In situ SWL of ureteral stones: comparison between an electrohydraulic and an electromagnetic shockwave source. JEndourol. 2002;16:209–214.

    Article  PubMed  Google Scholar 

  11. Sorensen C, Chandhoke P, Moore M, Wolf C, Sarram A. Comparison of intravenous sedation versus general anesthesia on the efficacy of the Doli 50 lithotriptor. JUrol. 2002;168:35–37.

    Article  PubMed  Google Scholar 

  12. Jain A, Shah TK. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. EurUrol. 2007;51:1680–1686.

    Article  PubMed  Google Scholar 

  13. Pishchalnikov YA, McAteer JA, Williams JC Jr, Pishchalnikova IV, VonDerHaar RJ. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. JEndourol. 2006a;20:537–541.

    Article  PubMed  Google Scholar 

  14. Zeman RK, Davros WJ, Goldberg JA, et al. Cavitation effects during lithotripsy. Part II. Clinical observations. Radiology. 1990b;177:163–166.

    CAS  PubMed  Google Scholar 

  15. Cleveland RO, Anglade R, Babayan RK. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. JEndourol. 2004;18:629–633.

    Article  PubMed  Google Scholar 

  16. Lingeman JE, Cleveland RO, Evan AP, et al. Stone technology: shock wave and intracorporeal lithotripsy. In: Denstedt J, Khoury S, eds. Stone Disease. 2nd International Consulation on Stone Disease. 21st ed. Paris: Health Publications; 2008:85–135.

    Google Scholar 

  17. Sheir KZ, Elhalwagy SM, Abo-Elghar ME, et al. Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: a prospective randomized study of effectiveness and safety in comparison to standard single-pulse technique. BJU Int. 2008;101:1420–1426.

    Article  PubMed  Google Scholar 

  18. Wang R, Faerber GJ, Roberts WW, Morris DS, Wolf JS Jr. Single-center North American experience with Wolf Piezolith 3000 in Management of Urinary Calculi. Urology. 2009;73(5):958–963.

    Article  PubMed  Google Scholar 

  19. Eisenmenger W, Du XX, Tang C, et al. The first clinical results of “wide-focus and low-pressure” ESWL. Ultrasound MedBiol. 2002;28:769–774.

    Article  CAS  PubMed  Google Scholar 

  20. Evan AP, McAteer JA, Connors BA, et al. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJUInt. 2008b;101:382–388.

    Article  PubMed  Google Scholar 

  21. Talic RF, Rabah DM. Effect of modification of shock-wave delivery on stone fragmentation. CurrOpinUrol. 2006b;16:83–87.

    Article  PubMed  Google Scholar 

  22. Lokhandwalla M, Sturtevant B. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. PhysMedBiol. 2000a;45:1923–1940.

    Article  CAS  PubMed  Google Scholar 

  23. Zhong P, Preminger GM. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J Endourol. 1994;8:263–68.

    Article  CAS  PubMed  Google Scholar 

  24. Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR. A mechanistic analysis of stone fracture in lithotripsy. JAcoustSocAm. 2007a;121:1190–1202.

    Article  PubMed  Google Scholar 

  25. Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR. A mechanistic analysis of stone fracture in lithotripsy. JAcoustSocAm. 2007b;121:1190–1202.

    Article  PubMed  Google Scholar 

  26. Crum LA. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. JUrol. 1988;140:1587–1590.

    CAS  PubMed  Google Scholar 

  27. Sass W, Dreyer HP, Kettermann S, Seifert J. The role of cavitational activity in fragmentation processes by lithotripters. JStoneDis. 1992;4:193–207.

    CAS  PubMed  Google Scholar 

  28. Seemann O, Rassweiler J, Chvapil M, Alken P, Drach GW. The effect of single shock waves on the vascular system of artificially perfused rabbit kidneys. JStoneDis. 1993;5:172–178.

    CAS  PubMed  Google Scholar 

  29. Pishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. JUrol. 2006c;176:2706–2710.

    Article  PubMed  Google Scholar 

  30. Zeman RK, Davros WJ, Garra BS, Horii SC. Cavitation effects during lithotripsy. Part I. Results of in vitro experiments. Radiology. 1990a;177:157–161.

    CAS  PubMed  Google Scholar 

  31. Neucks JS, Pishchalnikov YA, Zancanaro AJ, VonDerHaar JN, Williams JC Jr, McAteer JA. Improved acoustic coupling for shock wave lithotripsy. UrolRes. 2008;36:61–66.

    Article  PubMed  Google Scholar 

  32. Auge BK, Preminger GM. Update on shock wave lithotripsy technology. CurrOpinUrol. 2002;12:287–290.

    Article  PubMed  Google Scholar 

  33. Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. JUrol. 2008;179:194–197.

    Article  PubMed  Google Scholar 

  34. Paterson RF, Lifshitz DA, Lingeman JE, et al. Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. JUrol. 2002a;168:2211–2215.

    Article  PubMed  Google Scholar 

  35. Madbouly K, El Tiraifi AM, Seida M, El Faqih SR, Atassi R, Talic RF. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. JUrol. 2005;173:127–130.

    Article  PubMed  Google Scholar 

  36. McAteer JA, Evan AP, Williams JC Jr, Lingeman JE. Treatment protocols to reduce renal injury during shock wave lithotripsy. CurrOpinUrol. 2009;19:192–195.

    Article  PubMed  Google Scholar 

  37. Pace KT, Ghiculete D, Harju M, Honey RJ. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. JUrol. 2005;174:595–599.

    Article  PubMed  Google Scholar 

  38. Yilmaz E, Batislam E, Basar M, Tuglu D, Mert C, Basar H. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study:. Urology. 2005;66:1160–1164.

    Article  PubMed  Google Scholar 

  39. Pishchalnikov YA, McAteer JA, Williams JC Jr. Effect of firing rate on the performance of shock wave lithotriptors. BJUInt. 2008;102:1681–1686.

    Article  PubMed  Google Scholar 

  40. Handa RK, Bailey MR, Paun M, et al. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int. 2009;103(9): 1270–1274.

    Article  PubMed  Google Scholar 

  41. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t:. BMJ. 1996;312:71–72.

    CAS  PubMed  Google Scholar 

  42. McAteer JA, Evan AP. The acute and long-term adverse effects of shock wave lithotripsy. SeminNephrol. 2008;28:200–213.

    Article  PubMed  Google Scholar 

  43. Williams AR, Delius M, Miller DL, Schwarze W. Investigation of cavitation in flowing media by lithotripter shock waves both in vitro and in vivo. Ultrasound MedBiol. 1989;15:53–60.

    Article  CAS  PubMed  Google Scholar 

  44. Kurz W, Klein B, Rumstadt B. Colonic perforation after extracorporeal shock wave lithotripsy. DtschMedWochenschr. 2009;134:401–403.

    Article  CAS  PubMed  Google Scholar 

  45. Bergsdorf T, Thuroff S, Chaussy C. The isolated perfused kidney: an in vitro test system for evaluation of renal tissue damage induced by high-energy shockwaves sources. JEndourol. 2005;19: 883–888.

    Article  PubMed  Google Scholar 

  46. Evan AP, McAteer JA, Connors BA, Blomgren PM, Lingeman JE. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. BJUInt. 2007;100: 624–627.

    Article  PubMed  Google Scholar 

  47. Kohrmann KU, Back W, Bensemann J, et al. The isolated perfused kidney of the pig: new model to evaluate shock wave-induced lesions. JEndourol. 1994;8:105–110.

    Article  CAS  PubMed  Google Scholar 

  48. Rassweiler J, Kohrmann KU, Back W, et al. Experimental basis of shockwave-induced renal trauma in the model of the canine kidney. World JUrol. 1993;11:43–53.

    Article  CAS  PubMed  Google Scholar 

  49. Matlaga BR, McAteer JA, Connors BA, et al. Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol. 2008 Jan;22(1):121–6.

    Article  PubMed  Google Scholar 

  50. Teichman JM, Portis AJ, Cecconi PP, et al. In vitro comparison of shock wave lithotripsy machines. JUrol. 2000;164:1259–1264.

    Article  CAS  PubMed  Google Scholar 

  51. Chan SL, Stothers L, Rowley A, Perler Z, Taylor W, Sullivan LD. A prospective trial comparing the efficacy and complications of the modified Dornier HM3 and MFL 5000 lithotriptors for solitary renal calculi. JUrol. 1995;153:1794–1797.

    Article  CAS  PubMed  Google Scholar 

  52. Francesca F, Grasso M, Da Pozzo L, Bertini R, Nava L, Rigatti P. Ureteral lithiasis: in situ piezoelectric versus in situ spark gap lithotripsy. A randomized study. ArchEspUrol. 1995;48: 760–763.

    CAS  PubMed  Google Scholar 

  53. Gerber R, Studer UE, Danuser H. Is newer always better? A comparative study of 3 lithotriptor generations. JUrol. 2005;173:2 013–2016.

    Article  PubMed  Google Scholar 

  54. Sheir KZ, Madbouly K, Elsobky E. Prospective randomized comparative study of the effectiveness and safety of electrohydraulic and electromagnetic extracorporeal shock wave lithotriptors. JUrol. 2003;170:389–392.

    Article  PubMed  Google Scholar 

  55. Tiselius HG. Removal of ureteral stones with extracorporeal shock wave lithotripsy and ureteroscopic procedures. What can we learn from the literature in terms of results and treatment efforts? UrolRes. 2005;33:185–190.

    Article  PubMed  Google Scholar 

  56. Rassweiler, JJ, Bergsdorf,T, Bohris,C, et al. Shock wave technology and application – state of the art in 2009. In: Chaussy C, Haupt G, Jocham D, Köhrmann KU, Wilbert D (eds.) Update in Therapeutic Energy Application in Urology. Thieme Stuttgart – New York, 2009:In press

    Google Scholar 

Download references

Acknowledgments

This chapter includes the results of two consensus meetings of the German Society of Shock Wave Lithotripsy in 20058 and 2009.56 The aim of these meetings was to exchange knowledge and to reach a consensus with respect to the physics, technical issues, and applications of ESWL. This unique panel consisted of urological experts as well as representatives of lithotripter manufacturers and incorporated an extensive review of the current literature.

Besides the authors, the following experts were part of the panel:

Thorsten Bergsdorf, Christian Chaussy Department of Urology, Stadtkrankenhaus München-Harlaching, University of Munich, Germany

Christian Bohris, Bernd Forssmann, Department of Research, Dornier MedTech Systems, D 82234 Wesseling, Germany

Michael Burkhardt, Peter Vallon; Department of Research, Richard Wolf, D75434 Knittlingen, Germany

Leandro Burnes, Christian Meinert, R&D Urology, Siemens Medical Solutions, D91052 Erlangen, Germany

Paul Partheymüller; Department of Clinical Application, EDAP TMS GmbH, D24937 Flensburg, Germany

Othmar Wess; Department of Research, Storz-Medical, CH8280 Kreuzlingen, Switzerland

Jürgen Williger; AST GmbH, D07745 Jena, Germany

Dieter Jocham; Department Of Urology, University of Schleswig-Holstein (UKSH) Campus Lubeck Medica, Lübeck, Germany

Gerald Haupt; Department of Urology, St.-Vincentius-Krankenhauses, Speyer, Germany

Dirk Wilbert, Department of Urology, Kantonales Spital, CH-8730 Uznach, Switzerland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Uwe Köhrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Köhrmann, K.U., Rassweiler, J. (2010). Extracorporeal Shock Wave Lithotriptors. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_23

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics