Skip to main content

What Are Shock Waves?

  • Chapter
  • First Online:
Urinary Tract Stone Disease
  • 1634 Accesses

Abstract

Extracorporeal shock wave lithotripsy (SWL) has become the primary, noninvasive treatment modality for patients with stones in the kidney or ureter. Given this, it is essentially mandatory for all urologists to have basic knowledge of shock waves so that they may perform safer and more efficient SWL treatments. Unfortunately, most of the literature on shock wave physics is highly specialized. With this in mind, the aim of this chapter is to provide an easy to follow description of what lithotripter shock waves are. This chapter may also serve as a guide for physicians working on non-urological shock wave lithotripsy or other clinical and experimental applications of shock waves to medicine. The physics behind shock wave lithotripsy is quite a large subject, so a special effort has been made here to focus the discussion on an understanding of what shock waves are.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossing TD. Springer Handbook of Acoustics. New York: Springer Verlag; 2007.

    Book  Google Scholar 

  2. van der Hul R, Plaisier P, Jeekel J, Terpstra O, den Toom R, Bruinning H. Extracorporeal shockwave lithotripsy of pancreatic duct stones: Immediate and long-term results. Endoscopy. 1994;26:573.

    Article  PubMed  Google Scholar 

  3. Capaccio P, Ottaviani F, Manzo R, Schindler A, Cesana B. Extracorporeal lithotripsy for salivary calculi: a long-term clinical experience. Laryngoscope. 2004;114:1069-1073.

    Article  PubMed  Google Scholar 

  4. Kim HG. Role of extracorporeal shockwave lithotripsy for the treatment of pancreatic duct stone. Korean J Gastroenterol. 2005;46:418-22.

    PubMed  Google Scholar 

  5. Schleberger R, Senge T. Non-invasive treatment of long bone pseudarthrosis by shock waves (ESWL). Archiv Orthop Trauma Surg. 1992;111:224-227.

    Article  CAS  Google Scholar 

  6. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol. 1997;158:4-11.

    Article  CAS  PubMed  Google Scholar 

  7. Lebret T, Loison G, Herve JM, et al. Extracorporeal shock wave therapy in the treatment of Peyronie’s disease: experience with standard lithotriptor (Siemens-Multiline). Urol. 2002;59:657-661.

    Article  PubMed  Google Scholar 

  8. Hauck EW, Hauptmann A, Bschleipfer T, Schmelz HU, Altinkilic BM, Weidner W. Questionable efficacy of extracorporeal shock wave therapy for Peyronie’s disease: results of a prospective approach. J Urol. 2004;171:296-299.

    Article  PubMed  Google Scholar 

  9. Steinbach P, Hofstädter H, Nicolai H, Rössler W, Wieland W. In vitro investigations on cellular damage induced by high energy shock waves. Ultrasound Med Biol. 1992;18:691-699.

    Article  CAS  PubMed  Google Scholar 

  10. Oosterhof GON, Cornel EB, Smits GAHJ, Debruyne FM, Schalken JA. The influence of high-energy shock waves on the development of metastases. Ultrasound Med Biol. 1996;22:339-344.

    Article  CAS  PubMed  Google Scholar 

  11. Lauer U, Bürgelt E, Squire Z, et al. Shock Wave permeabilization as a new gene transfer method. Gene Ther. 1997;4:710-715.

    Article  CAS  PubMed  Google Scholar 

  12. Armenta E, Varela A, Escalera G, Loske AM. Transfección de la línea celular Hela derivada de un tumor cervico-uterino por medio de ondas de choque in vitro. Rev Mex Fis. 2006;52:352-358.

    Google Scholar 

  13. Kodama T, Tatsuno M, Sugimoto S, Uenohara H, Yoshimoto T, Takayama K. Liquid jets, accelerated thrombolysis: a study for revascularization of cerebral embolism. Ultrasound Med Biol. 1999;25:977-983.

    Article  CAS  PubMed  Google Scholar 

  14. von Eiff C, Overbeck J, Haupts G, et al. Bactericidal effect of extracorporeal shock waves on Staphylococcus aureus. J Med Microbiol. 2000;49:709-712.

    Google Scholar 

  15. Álvarez UM, Loske AM, Castaño-Tostado E, Prieto FE. Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes by underwater shock waves. Innov Food Sci Emerg Technol. 2004;5:459-463.

    Article  Google Scholar 

  16. Álvarez UM, Ramírez A, Fernández F, Méndez A, Loske AM. The influence of single-pulse and tandem shock waves on bacteria. Shock Waves. 2008;17:441-447.

    Article  Google Scholar 

  17. Cleveland RO, McAteer JA. The physics of shock wave lithotripsy. In: Smith AD, Badlani GH, Bagley DH, et al., eds. Smith’s Textbook on Endourology. Ontario, Canada: BC Decker Inc.; 2007.

    Google Scholar 

  18. Lingeman JE. Lithotripsy systems. In: Smith AD, Badlani GH, Bagley DH, et al., eds. Smith’s Textbook on Endourology. Ontario, Canada: BC Decker Inc; 2007.

    Google Scholar 

  19. Loske AM. Shock Wave Lithotripsy Physics for Urologists. Querétaro, México: Centro de Física Aplicada y Tecnología Avanzada, UNAM; 2007.

    Google Scholar 

  20. Wess O, Marlinghaus EH, Katona J. A new design of an optimal acoustic source for extracorporeal lithotripsy. In: Burhenne J, ed. Billiary Lithotripsy II. Chicago, Illinois: Year Book Medical Publishers, Inc.; 1990.

    Google Scholar 

  21. Köhrmann KU, Rassweiller JJ, Manning M, et al. The clinical introduction of a third generation lithotripter: Modulith SL 20. J Urol. 1995;153:1379-1383.

    Article  PubMed  Google Scholar 

  22. Eisenmenger W, Du X, Tang C, et al. The first clinical results of wide-focus and low-pressure ESWL. Ultrasound Med Biol. 2002;28:769-774.

    Article  CAS  PubMed  Google Scholar 

  23. Riedlinger R, Dreyer T, Krauss W. Small aperture piezo sources for lithotripsy. In: Bettucci A (ed). Proceedings of the 17th International Congress on Acoustics Vol. IV, Rome, 2002.

    Google Scholar 

  24. Wess O, Ueberle F, Dührssen RN, et al. Working group technical developments – consensus report. In: Chaussy Ch, Eisenberger F, Jocham D, Wilbert D, eds. High Energy Schock Waves in Medicine. Stuttgart: Thieme Verlag; 1997.

    Google Scholar 

  25. Staudenraus J, Eisenmenger W. Fibre-optic hydrophone for ultrasonic and shock wave measurements in water. Ultrasonics. 1993;31:267-273.

    Article  Google Scholar 

  26. Granz B, Nank R, Fere J. Light spot hydrophone, innovation in lithotripsy. Med Solut. 2004;6:86-87.

    Google Scholar 

  27. Folberth W, Köhler G, Rohwedder A, Matura E. Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources. J Lithotr Stone Dis. 1992;4:1-7.

    CAS  Google Scholar 

  28. Lokhandwalla M, Sturtevant B. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol. 2000;45:1923-1949.

    Article  CAS  PubMed  Google Scholar 

  29. Eisenmenger W. The mechanism of stone fragmentation in ESWL. Ultrasound Med Biol. 2001;27:683-693.

    Article  CAS  PubMed  Google Scholar 

  30. Prieto FE, Loske AM. Bifocal reflector for electrohydraulic lithotripters. J Endourol. 1999;13:65-75.

    Article  CAS  PubMed  Google Scholar 

  31. Sokolov DL, Bailey MR, Crum LA. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J Acoust Soc Am. 2001;110:1685-1695.

    Article  CAS  PubMed  Google Scholar 

  32. Bailey MR, Pishchalnikov YA, Sapozhnikov OA, et al. Cavitation detection during shock-wave lithotripsy. Ultrasound Med Biol. 2005;31:1245-1256.

    Article  PubMed  Google Scholar 

  33. Crum LA. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol. 1988;140:1587-1590.

    CAS  PubMed  Google Scholar 

  34. Brennen CE. Cavitation Bubble Dynamics. New York: Oxford University Press; 1995.

    Google Scholar 

  35. Cathignol D. Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses. IEEE Trans Ultrason, Ferroel Freq Control. 1998;45:788-799.

    Article  CAS  Google Scholar 

  36. Zhong P, Xi X, Zhu S, Cocks F, Preminger GM. Recent developments in ESWL physics research. J Endourol. 1999;13:611-617.

    Article  CAS  PubMed  Google Scholar 

  37. Loske AM, Fernández F, Zendejas H, Paredes M, Castaño-Tostado E. Dual-pulse shock wave lithotripsy: in vitro and in vivo study. J Urol. 2005;174:2388-2392.

    Article  PubMed  Google Scholar 

  38. Mulvaney WP. Attempted disintegration of calculi by ultrasonic vibrations. J Urol. 1953;70:704-707.

    CAS  PubMed  Google Scholar 

  39. Pareek G, Hedigan SP, Lee FT, Nakada SY. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urol. 2005;66:941-944.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges Francisco Fernández, Ulises Mora, and Arturo Méndez for support. All figures were designed by Gabriela Trucco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim M. Loske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Loske, A.M. (2010). What Are Shock Waves?. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics