Skip to main content

Genetics and Molecular Biology of Renal Stones

  • Chapter
  • First Online:
Urinary Tract Stone Disease

Abstract

Genetic studies of calcium kidney stones have hitherto assessed single candidate genes by testing for linkage disequilibria or associations between a locus and stone disease. They have identified the potential involvement of the calcium-sensing receptor (CaSR), vitamin D receptor, (VDR), and bicarbonate-sensitive adenylyl cyclase genes. In addition to research in humans, studies on different strains of knock-out mice have enabled us to include the phosphate reabsorption carrier NPT2 gene, the caveolin-1 gene, the protein NHERF-1 gene modulating calcium and urate reabsorption, osteopontin, and Tamm–Horsfall protein among the possible determinants. Interactions between genes, and between environmental factors and genes, are generally considered fundamental to calcium stone formation, however. To date, therefore, genetic studies have failed to significantly advance our understanding of the causes of calcium kidney stones, though they have enabled us to assess the dimension of the problem and establish criteria for facing it. Further progress in our knowledge of what causes calcium stones may derive from using the tools afforded to researchers by modern biotechnology and bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodkinson A, Pyrah LN. The urinary excretion of calcium and inorganic phosphate in 344 patients with calcium stones of renal origin. Brit J Surg. 1958;46:10-18.

    Article  Google Scholar 

  2. Manolio TA, Bailey-Wilson JE, Collins FS. Genes, environment and the value of prospective cohort studies. Nature Rev Genet. 2006;7:812-820.

    Article  CAS  PubMed  Google Scholar 

  3. Colhourn HM, McKeigue PM, Smith JD. Problems of reporting genetics associations with complex outcomes. Lancet. 2003;361: 865-872.

    Article  Google Scholar 

  4. Loredo-Osti JC, Roslin NM, Tessier J, et al. Segregation of urine calcium excretion in families ascertained for nephrolithiasis: evidence for a major gene. Kidney Int. 2005;68:966-971.

    Article  CAS  PubMed  Google Scholar 

  5. Lander ES, Schork NJ. Gentic dissection of complex traits. Science. 1994;265:2037-2048.

    Article  CAS  PubMed  Google Scholar 

  6. Scott P, Ouimet D, Proulx Y, et al. The 1 alpha hydroxylase locus is not linked to calcium stone formation or calciuric phenotype in French-Canadian families. J Am Soc Nephrol. 1998;9:425-432.

    CAS  PubMed  Google Scholar 

  7. Scott P, Ouimet D, Valiquette L, et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol. 1999;10:1007-1013.

    CAS  PubMed  Google Scholar 

  8. Petrucci M, Scott P, Ouimet D, et al. Evaluation of the calcium-sensing receptor gene in idiopathic hypercalciuria and calcium nephrolithiasis. Kidney Int. 2000;58:38-42.

    Article  CAS  PubMed  Google Scholar 

  9. Khullar M, Relan V, Singh SK. VDR gene and urinary calcium excretion in nephrolithiasis. Kidney Int. 2006;69:943.

    Article  CAS  PubMed  Google Scholar 

  10. Lerolle N, Coulet F, Lantz B, et al. No evidence for point mutations of the calcium-sensing receptor in familial idiopathic hypercalciuria. Nephrol Dial Transplant. 2001;16:2317-2322.

    Article  CAS  PubMed  Google Scholar 

  11. Reed BY, Heller HJ, Gitomer WL, et al. Mapping a gene defect in absorptive hypercalciuria to chromososme 1q23.3-q24. J Clin Endocrinol Metab. 1999;84:3907-3913.

    Article  CAS  PubMed  Google Scholar 

  12. Reed BY, Gitomer WL, Heller HJ, et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spine bone density. J Clin Endocrinol Metab. 2002;87:1476-1485.

    Article  CAS  PubMed  Google Scholar 

  13. Geng W, Wang Z, Zhang J, et al. Cloning and characterization of the human soluble adenylyl cyclase. Am J Physiol Cell Physiol. 2005;288:C1305-C1316.

    Article  CAS  PubMed  Google Scholar 

  14. Muller D, Hoenderop JGJ, Vennekens R, et al. Epithelial Ca channel (ECAC1) in autosomal dominant idiopathic hypercalciuria. Nephrol Dial Transplant. 2002;17:1614-1620.

    Article  PubMed  Google Scholar 

  15. Goodman HO, Holmes RP, Assimov DG. Genetic factors in calcium oxalate stone disease. J Urol. 1995;153:301-307.

    Article  CAS  PubMed  Google Scholar 

  16. Wright A, Charlesworth B, Rudan I, et al. A polygenic basis for late-onset disease. Trends Genet. 2003;19:97-106.

    Article  CAS  PubMed  Google Scholar 

  17. Borghi L, Schianchi T, Meschi T, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346:77-84.

    Article  CAS  PubMed  Google Scholar 

  18. Gambaro G, Vezzoli G, Casari G, et al. Genetics of hypercalciuria and calcium nephrolithiasis: from the rare monogenic to the common polygenic forms. Am J Kidney Dis. 2004;44:963-986.

    Article  CAS  PubMed  Google Scholar 

  19. Wang WYS, Barratt BJ, Clayton DG, et al. Todd JA. Genome-wide assocition studies: theoretical and practical concerns. Nature Rev Genet. 2005;6:109-118.

    Article  CAS  PubMed  Google Scholar 

  20. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complelx genetic traits: practical considerations. Nature Rev Genet. 2002;3:1-7.

    Article  Google Scholar 

  21. Soylemezoglu O, Ozkaya O, Gonen S, et al. Vitamin D receptor gene polymorphism in hypercalciuric children. Pediatr Nephrol. 2004;19:724-727.

    Article  PubMed  Google Scholar 

  22. Rendina D, Mossetti G, Viceconti R, et al. Association between vitamin D receptor gene polymorphisms and fasting idiopathic hypercalciuria in recurrent stone-forming patients. Urology. 2004;64:833-838.

    Article  PubMed  Google Scholar 

  23. Relan V, Khullar M, Singh SK, et al. Association of vitamin D receptor genotypes with calcium excretion in nephrolithiatic subjects in northern India. Urol Res. 2004;32:236-240.

    Article  CAS  PubMed  Google Scholar 

  24. Vezzoli G, Soldati L, Proverbio MC, et al. Polymorphism of vitamin D receptor gene start codon in patients with calcium kidney stones. J Nephrol. 2002;15:158-164.

    CAS  PubMed  Google Scholar 

  25. Sugiyama T, Wang JC, Scott DK, Granner DK. Transcriptionactivation by the orphan nuclear receptor, chicken ovalbumin upstream promoter-trascription factor I (COUP-TFI). J Biol Chem. 2000;275: 3446-3454.

    Article  CAS  PubMed  Google Scholar 

  26. Vezzoli G, Tanini A, Ferrucci L, et al. Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J Am Soc Nephrol. 2002;13:2517-2523.

    Article  CAS  PubMed  Google Scholar 

  27. Vezzoli G, Terranegra A, Arcidiacono T, et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int. 2007;71:1155-1162.

    Article  CAS  PubMed  Google Scholar 

  28. Corbetta S, Eller-Vainicher C, Filopanti M, et al. The A990G polymorphism of calcium sensing receptor gene (CaSR) is associated with nephrolithiasis in patients with primary hyperparathyroidism (PHPT). Eur J Endocr. 2006;155:687-692.

    Article  CAS  Google Scholar 

  29. Terranegra A, Arcidiacono T, Biasion R, et al. Calcium-sensing receptor (CaSR), a candidate gene for calcium kidney stone disease. Nephrol Dial Transplant. 2006;21(suppl 4):292.

    Google Scholar 

  30. Bushinsky DA. Nephrolithiasis: site of the initial solid phase. J Clin Invest. 2003;111:602-605.

    CAS  PubMed  Google Scholar 

  31. Gao B, Yasui T, Itoh Y. Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int. 2007;72:592-598.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki Y, Pasch A, Bonny O, et al. Gain of function haplotype in the epithelial calcium channel TRPV6 is a risk factor for renal calcium stone formation. Hum Mol Genet. 2008;17(11):1613-8.

    Article  CAS  PubMed  Google Scholar 

  33. Chen WC, Wu HC, Chen HY, et al. Interleukin-1beta gene and receptor antagonist gene polymorphisms in patients with calcium oxalate stones. Urol Res. 2001;29:321-324.

    Article  CAS  PubMed  Google Scholar 

  34. Tsai FJ, Lin CC, Lu HF, et al. Urokinase gene 3’-UTR T/C polymorphism is associated with urolithiasis. Urology. 2002;59:458-461.

    Article  PubMed  Google Scholar 

  35. Tsai FJ, Wu HC, Chen HY, et al. Association of E-cadherin gene 3-UTR C/T polymorphism with calcium oxalate stone disease. Urol Int. 2003;70:278-281.

    Article  CAS  PubMed  Google Scholar 

  36. Chen WC, Chen HY, Wu HC, et al. Vascular endothelial growth factor gene polymorphism is associated with calcium oxalate stone disease. Urol Res. 2003;31:218-222.

    Article  CAS  PubMed  Google Scholar 

  37. Freedman ML, Reich D, Penney KL, et al. Assessing the impact of population stratification on genetic association studies. Nat Genet. 2004;36:388-993.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang Z, Asplin JR, Evan AP, et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet. 2006;38:474-478.

    Article  CAS  PubMed  Google Scholar 

  39. Cao G, Yang G, Timme TL, et al. Disruption of the caveolin-1 gene impairs renal calcium reabsorption and leads to hypercalciuria and urolithiasis. Am J Pathol. 2003;162:1241-1248.

    CAS  PubMed  Google Scholar 

  40. Weinman EJ, Mohanlal V, Stoycheff N, et al. Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am JPhysiol Renal Physiol. 2006;290:F838-843.

    Article  CAS  Google Scholar 

  41. Mo L, Liaw L, Evan AP, et al. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsf all protein, or both. Am J Physiol Renal Physiol. 2007;293:F1935-1943.

    Article  CAS  PubMed  Google Scholar 

  42. Chau H, El-Maadawy S, McKee M, et al. Renal calcification in mice homozygous for the disrupted type Iia Na/Pi cotransporter gene Npt2. J Bone Miner Res. 2003;18:64-657.

    Article  Google Scholar 

  43. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193-201.

    Article  CAS  PubMed  Google Scholar 

  44. Gupta A, Tenenhouse HS, Hoag HM, et al. Identification of the type II Na+–Pi cotransporter (Npt2) in the osteoclast and the skeletal phenotype of Npt2−/− mice. Bone. 2001;29:467-476.

    Article  CAS  PubMed  Google Scholar 

  45. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nature Rev Genet. 2007;8:253-262.

    Article  CAS  PubMed  Google Scholar 

  46. Robertson KD. DNA metilation and human disease. Nature Rev Genet. 2005;6:597-610.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gambaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Gambaro, G., Soldati, L., Vezzoli, G. (2010). Genetics and Molecular Biology of Renal Stones. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics