Skip to main content

Uric Acid Metabolism and Uric Acid Stones

  • Chapter
  • First Online:
Urinary Tract Stone Disease

Abstract

Uric acid nephrolithiasis comprises 8–10% of patients with kidney stone disease. However, this prevalence is higher in particular ethnic populations and in certain regions of the world. The major pathophysiologic mechanism for uric acid nephrolithiasis is unduly acidic urine. At a urinary pH below 5.5, the concentration of sparingly soluble uric acid increases and promotes the formation of uric acid stones. Unduly acidic urine is likely due to defective renal ammoniagenesis. Moreover, emerging studies suggest that increased endogenous acid production, in addition to defective urinary ammonium buffering, may also be responsible for the abnormally acidic urine in this population. The underlying mechanism of low urinary ammonium and increased endogenous acid production has been linked to the metabolic syndrome and may also be associated with renal fat accumulation in the kidney. Although low urinary pH is necessary, it alone is not sufficient for uric acid crystal precipitation. This implies the potential role of inhibitors and/or promoters of uric acid crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pak CY, Sakhaee K, Moe O, et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 2003;61(3):523-527.

    Article  PubMed  Google Scholar 

  2. Ekeruo WO, Tan YH, Young MD, et al. Metabolic risk factors and the impact of medical therapy on the management of nephrolithiasis in obese patients. J Urol. 2004;172(1):159-163.

    Article  PubMed  Google Scholar 

  3. Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res. 2006;34(3):193-199.

    Article  PubMed  Google Scholar 

  4. Daudon M, Traxer O, Conort P, Lacour B, Jungers P. Type 2 diabetes increases the risk for uric acid stones. J Am Soc Nephrol. 2006;17(7):2026-2033.

    Article  CAS  PubMed  Google Scholar 

  5. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285(19):2486-2497.

    Google Scholar 

  6. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539-553.

    Article  CAS  PubMed  Google Scholar 

  7. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415-1428.

    Article  CAS  PubMed  Google Scholar 

  8. Reaven GM. The kidney: an unwilling accomplice in syndrome X. Am J Kidney Dis. 1997;30(6):928-931.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455-462.

    Article  CAS  PubMed  Google Scholar 

  10. Taylor EN, Stampfer MJ, Curhan GC. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 2005;68(3):1230-1235.

    Article  PubMed  Google Scholar 

  11. Daudon M, Lacour B, Jungers P. High prevalence of uric acid calculi in diabetic stone formers. Nephrol Dial Transplant. 2005;20(2):468-469.

    Article  PubMed  CAS  Google Scholar 

  12. Mandel NS, Mandel GS. Urinary tract stone disease in the United States veteran population II. Geographical analysis of variations in composition. J Urol. 1989;142(6):1516-1521.

    CAS  PubMed  Google Scholar 

  13. Atsmon A, DeVries A, Frank M. Uric Acid Lithiasis. Amsterdam: Elsevier; 1963.

    Google Scholar 

  14. Hesse A, Schneider HJ, Berg W, Hienzsch E. Uric acid dihydrate as urinary calculus component. Invest Urol. 1975;12(5):405-409.

    CAS  PubMed  Google Scholar 

  15. Portis AJ, Hermans K, Culhane-Pera KA, Curhan GC. Stone disease in the Hmong of Minnesota: initial description of a high-risk population. J Endourol. 2004;18(9):853-857.

    Article  PubMed  Google Scholar 

  16. Asplin JR. Uric acid stones. Semin Nephrol. 1996;16(5):412-424.

    CAS  PubMed  Google Scholar 

  17. Cameron MA, Sakhaee K. Uric acid nephrolithiasis. Urol Clin North Am. 2007;34(3):335-346.

    Article  PubMed  Google Scholar 

  18. Sorensen L. Extrarenal disposal of uric acid. In: Kelley W, Weiner I, eds. Uric Acid. New York: Springer; 1978:325-336.

    Google Scholar 

  19. Sakhaee K, Nigam S, Snell P, Hsu MC, Pak CY. Assessment of the pathogenetic role of physical exercise in renal stone formation. J Clin Endocrinol Metab. 1987;65(5):974-979.

    Article  CAS  PubMed  Google Scholar 

  20. Fellstrom B, Danielson BG, Karlstrom B, Lithell H, Ljunghall S, Vessby B. The influence of a high dietary intake of purine-rich animal protein on urinary urate excretion and supersaturation in renal stone disease. Clin Sci (Lond). 1983;64(4):399-405.

    CAS  Google Scholar 

  21. Sorensen LB. Role of the intestinal tract in the elimination of uric acid. Arthritis Rheum. 1965;8(5):694-706.

    Article  CAS  PubMed  Google Scholar 

  22. Roch-Ramel F, Diezi-Chomety F, De Rougemont D, Tellier M, Widmer J, Peters G. Renal excretion of uric acid in the rat: a micropuncture and microperfusion study. Am J Physiol. 1976;230(3):768-776.

    CAS  PubMed  Google Scholar 

  23. Simmonds HA, Hatfield PJ, Cameron JS, Cadenhead A. Uric acid excretion by the pig kidney. Am J Physiol. 1976;230(6):1654-1661.

    CAS  PubMed  Google Scholar 

  24. Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447-452.

    CAS  PubMed  Google Scholar 

  25. Hediger MA, Johnson RJ, Miyazaki H, Endou H. Molecular physiology of urate transport. Physiology (Bethesda). 2005;20:125-133.

    CAS  Google Scholar 

  26. Guggino SE, Martin GJ, Aronson PS. Specificity and modes of the anion exchanger in dog renal microvillus membranes. Am J Physiol. 1983;244(6):F612-F621.

    CAS  PubMed  Google Scholar 

  27. Martinez F, Manganel M, Montrose-Rafizadeh C, Werner D, Roch-Ramel F. Transport of urate and p-aminohippurate in rabbit renal brush-border membranes. Am J Physiol. 1990;258(5 Pt 2):F1145-F1153.

    CAS  PubMed  Google Scholar 

  28. Mount DB, Kwon CY, Zandi-Nejad K. Renal urate transport. Rheum Dis Clin North Am. 2006;32(2):313-331. vi.

    Article  PubMed  Google Scholar 

  29. Roch-Ramel F, Werner D, Guisan B. Urate transport in brush-border membrane of human kidney. Am J Physiol. 1994;266(5 Pt 2):F797-F805.

    CAS  PubMed  Google Scholar 

  30. Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997;272(30):18526-18529.

    Article  CAS  PubMed  Google Scholar 

  31. Cha SH, Sekine T, Fukushima JI, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277-1286.

    CAS  PubMed  Google Scholar 

  32. Lipkowitz MS, Leal-Pinto E, Rappoport JZ, Najfeld V, Abramson RG. Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest. 2001;107(9):1103-1115.

    Article  CAS  PubMed  Google Scholar 

  33. Jutabha P, Kanai Y, Hosoyamada M, et al. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem. 2003;278(30):27930-27938.

    Article  CAS  PubMed  Google Scholar 

  34. Van Aubel RA, Smeets PH, van den Heuvel JJ, Russel FG. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol. 2005;288(2):F327-F333.

    Article  PubMed  CAS  Google Scholar 

  35. Rafey MA, Lipkowitz MS, Leal-Pinto E, Abramson RG. Uric acid transport. Curr Opin Nephrol Hypertens. 2003;12(5):511-516.

    Article  CAS  PubMed  Google Scholar 

  36. Coe FL, Strauss AL, Tembe V, Le Dun S. Uric acid saturation in calcium nephrolithiasis. Kidney Int. 1980;17(5):662-668.

    Article  CAS  PubMed  Google Scholar 

  37. Finlayson B, Smith L. Stability of first dissociable proton of uric acid. J Chem Engl Data. 1974;19:94-97.

    Article  CAS  Google Scholar 

  38. Riese RJ, Sakhaee K. Uric acid nephrolithiasis: pathogenesis and treatment. J Urol. 1992;148(3):765-771.

    CAS  PubMed  Google Scholar 

  39. Sakhaee K, Adams-Huet B, Moe OW, Pak CY. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62(3):971-979.

    Article  CAS  PubMed  Google Scholar 

  40. Sakhaee K, Nicar M, Hill K, Pak CY. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int. 1983;24(3):348-352.

    Article  CAS  PubMed  Google Scholar 

  41. Coe FL, Kavalach AG. Hypercalciuria and hyperuricosuria in patients with calcium nephrolithiasis. N Engl J Med. 1974;291(25):1344-1350.

    Article  CAS  PubMed  Google Scholar 

  42. Pak CY, Arnold LH. Heterogeneous nucleation of calcium oxalate by seeds of monosodium urate. Proc Soc Exp Biol Med. 1975;149(4):930-932.

    CAS  PubMed  Google Scholar 

  43. Pak CY, Hayashi Y, Arnold LH. Heterogeneous nucleation with urate, calcium phosphate and calcium oxalate. Proc Soc Exp Biol Med. 1976;153(1):83-87.

    CAS  PubMed  Google Scholar 

  44. Pak CY, Waters O, Arnold L, Holt K, Cox C, Barilla D. Mechanism for calcium urolithiasis among patients with hyperuricosuria: supersaturation of urine with respect to monosodium urate. J Clin Invest. 1977;59(3):426-431.

    Article  CAS  PubMed  Google Scholar 

  45. Wilcox WR, Khalaf A, Weinberger A, Kippen I, Klinenberg JR. Solubility of uric acid and monosodium urate. Med Biol Eng. 1972;10(4):522-531.

    Article  CAS  PubMed  Google Scholar 

  46. Koka RM, Huang E, Lieske JC. Adhesion of uric acid crystals to the surface of renal epithelial cells. Am J Physiol Renal Physiol. 2000;278(6):F989-F998.

    CAS  PubMed  Google Scholar 

  47. Ombra MN, Casula S, Biino G, et al. Urinary glycosaminoglycans as risk factors for uric acid nephrolithiasis: case control study in a Sardinian genetic isolate. Urology. 2003;62(3):416-420.

    Article  PubMed  Google Scholar 

  48. Maalouf NM, Cameron MA, Moe OW, Sakhaee K. Novel insights into the pathogenesis of uric acid nephrolithiasis. Curr Opin Nephrol Hypertens. 2004;13(2):181-189.

    Article  PubMed  Google Scholar 

  49. Pak CY. Medical management of nephrolithiasis in Dallas: update 1987. J Urol. 1988;140(3):461-467.

    CAS  PubMed  Google Scholar 

  50. Moe OW, Abate N, Sakhaee K. Pathophysiology of uric acid nephrolithiasis. Endocrinol Metab Clin North Am. 2002;31(4):895-914.

    Article  CAS  PubMed  Google Scholar 

  51. Mineo I, Kono N, Hara N, et al. Myogenic hyperuricemia. A common pathophysiologic feature of glycogenosis types III, V, and VII. N Engl J Med. 1987;317(2):75-80.

    Article  CAS  PubMed  Google Scholar 

  52. Grossman MS, Nugent FW. Urolithiasis as a complication of chronic diarrheal disease. Am J Dig Dis. 1967;12(5):491-498.

    Article  CAS  PubMed  Google Scholar 

  53. Pak CY, Skurla C, Harvey J. Graphic display of urinary risk factors for renal stone formation. J Urol. 1985;134(5):867-870.

    CAS  PubMed  Google Scholar 

  54. Alvarez-Nemegyei J, Medina-Escobedo M, Villanueva-Jorge S, Vazquez-Mellado J. Prevalence and risk factors for urolithiasis in primary gout: is a reappraisal needed? J Rheumatol. 2005;32(11):2189-2191.

    CAS  PubMed  Google Scholar 

  55. Cameron MA, Maalouf NM, Adams-Huet B, Moe OW, Sakhaee K. Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol. 2006;17(5):1422-1428.

    Article  CAS  PubMed  Google Scholar 

  56. Gianfrancesco F, Esposito T, Ombra MN, et al. Identification of a novel gene and a common variant associated with uric acid nephrolithiasis in a Sardinian genetic isolate. Am J Hum Genet. 2003;72(6):1479-1491.

    Article  CAS  PubMed  Google Scholar 

  57. Yu T, Weinreb N, Wittman R, Wasserman LR. Secondary gout associated with chronic myeloproliferative disorders. Semin Arthritis Rheum. 1976;5(3):247-256.

    Article  CAS  PubMed  Google Scholar 

  58. Shahinfar S, Simpson RL, Carides AD, et al. Safety of losartan in hypertensive patients with thiazide-induced hyperuricemia. Kidney Int. 1999;56(5):1879-1885.

    Article  CAS  PubMed  Google Scholar 

  59. Pak CY, Sakhaee K, Peterson RD, Poindexter JR, Frawley WH. Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int. 2001;60(2):757-761.

    Article  CAS  PubMed  Google Scholar 

  60. Henneman PH, Wallach S, Dempsey EF. The metabolism defect responsible for uric acid stone formation. J Clin Invest. 1962;41:537-542.

    Article  CAS  PubMed  Google Scholar 

  61. Gutman AB, Yue TF. An abnormality of glutamine metabolism in primary gout. Am J Med. 1963;35:820-831.

    Article  CAS  PubMed  Google Scholar 

  62. Pollak VE, Mattenheimer H. Glutaminase activity in the kidney in gout. J Lab Clin Med. 1965;66(4):564-570.

    CAS  PubMed  Google Scholar 

  63. Pagliara AS, Goodman AD. Elevation of plasma glutamate in gout. Its possible role in the pathogenesis of hyperuricemia. N Engl J Med. 1969;281(14):767-770.

    Article  CAS  PubMed  Google Scholar 

  64. Sperling O, Wyngaarden JB, Starmer CF. The kinetics of intramolecular distribution of 15N in uric acid after administration of (15N) glycine. A reappraisal of the significance of preferential labeling of N-(3+9) of uric acid in primary gout. J Clin Invest. 1973;52(10):2468-2485.

    Article  CAS  PubMed  Google Scholar 

  65. Maalouf NM, Sakhaee K, Parks JH, Coe FL, Adams-Huet B, Pak CY. Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 2004;65(4):1422-1425.

    Article  PubMed  Google Scholar 

  66. Maalouf NM, Cameron MA, Moe OW, Adams-Huet B, Sakhaee K. Low urine pH: a novel feature of the metabolic syndrome. Clin J Am Soc Nephrol. 2007;2(5):883-888.

    Article  CAS  PubMed  Google Scholar 

  67. Bobulescu IA, Dubree M, Zhang J, McLeroy P, Moe OW. Effect of renal lipid accumulation on proximal tubule Na+/H+ exchange and ammonium secretion. Am J Physiol Renal Physiol. 2008;294(6):F1315-F1322.

    Article  CAS  PubMed  Google Scholar 

  68. DuBose TD Jr, Good DW, Hamm LL, Wall SM. Ammonium transport in the kidney: new physiological concepts and their clinical implications. J Am Soc Nephrol. 1991;1(11):1193-1203.

    PubMed  Google Scholar 

  69. McCarron DA, Pingree PA, Rubin RJ, Gaucher SM, Molitch M, Krutzik S. Enhanced parathyroid function in essential hypertension: a homeostatic response to a urinary calcium leak. Hypertension. 1980;2(2):162-168.

    CAS  PubMed  Google Scholar 

  70. Nagami GT. Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest. 1988;81(1):159-164.

    Article  CAS  PubMed  Google Scholar 

  71. Meezan E, Freychet P. Specific insulin receptors in rat renal glomeruli. Ren Physiol. 1980;3(1–6):72-78.

    CAS  PubMed  Google Scholar 

  72. Nakamura R, Emmanouel DS, Katz AI. Insulin binding sites in various segments of the rabbit nephron. J Clin Invest. 1983;72(1):388-392.

    Article  CAS  PubMed  Google Scholar 

  73. Krivosikova Z, Spustova V, Dzurik R. Participation of P-dependent and P-independent glutaminases in rat kidney ammoniagenesis and their modulation by metabolic acidosis, hippurate and insulin. Physiol Res. 1998;47(3):177-183.

    CAS  PubMed  Google Scholar 

  74. Chobanian MC, Hammerman MR. Insulin stimulates ammoniagenesis in canine renal proximal tubular segments. Am J Physiol. 1987;253(6 Pt 2):F1171-F1177.

    CAS  PubMed  Google Scholar 

  75. Klisic J, Hu MC, Nief V, et al. Insulin activates Na(+)/H(+) exchanger 3: biphasic response and glucocorticoid dependence. Am J Physiol Renal Physiol. 2002;283(3):F532-F539.

    CAS  PubMed  Google Scholar 

  76. Vinay P, Lemieux G, Cartier P, Ahmad M. Effect of fatty acids on renal ammoniagenesis in in vivo and in vitro studies. Am J Physiol. 1976;231(3):880-887.

    CAS  PubMed  Google Scholar 

  77. Remer T. Influence of diet on acid-base balance. Semin Dial. 2000;13(4):221-226.

    Article  CAS  PubMed  Google Scholar 

  78. Unger RH. Lipotoxic diseases. Annu Rev Med. 2002;53:319-336.

    Article  CAS  PubMed  Google Scholar 

  79. Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. 1994;91(23):10878-10882.

    Article  CAS  PubMed  Google Scholar 

  80. Szczepaniak LS, Nurenberg P, Leonard D, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab. 2005;288(2):E462-E468.

    Article  CAS  PubMed  Google Scholar 

  81. Bachmann OP, Dahl DB, Brechtel K, et al. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes. 2001;50(11):2579-2584.

    Article  CAS  PubMed  Google Scholar 

  82. McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart, revisited. Ann Intern Med. 2006;144(7):517-524.

    CAS  PubMed  Google Scholar 

  83. Szczepaniak LS, Dobbins RL, Metzger GJ, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med. 2003;49(3):417-423.

    Article  CAS  PubMed  Google Scholar 

  84. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51(1):7-18.

    Article  CAS  PubMed  Google Scholar 

  85. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40(6):1387-1395.

    Article  PubMed  Google Scholar 

  86. Weinberg JM. Lipotoxicity. Kidney Int. 2006;70(9):1560-1566.

    Article  CAS  PubMed  Google Scholar 

  87. Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol. 2003;14(3):281-287.

    Article  CAS  PubMed  Google Scholar 

  88. Bagby SP. Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease? J Am Soc Nephrol. 2004;15(11):2775-2791.

    Article  PubMed  Google Scholar 

  89. Wahba IM, Mak RH. Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol. 2007;2(3):550-562.

    Article  CAS  PubMed  Google Scholar 

  90. Tiikkainen M, Hakkinen AM, Korsheninnikova E, Nyman T, Makimattila S, Yki-Jarvinen H. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes. 2004;53(8):2169-2176.

    Article  CAS  PubMed  Google Scholar 

  91. Gekle M. Renal tubule albumin transport. Annu Rev Physiol. 2005;67:573-594.

    Article  CAS  PubMed  Google Scholar 

  92. Russo LM, Sandoval RM, McKee M, et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 2007;71(6):504-513.

    Article  CAS  PubMed  Google Scholar 

  93. Iglesias J, Levine JS. Albuminuria and renal injury–beware of proteins bearing gifts. Nephrol Dial Transplant. 2001;16(2):215-218.

    Article  CAS  PubMed  Google Scholar 

  94. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355(22):2297-2307.

    Article  CAS  PubMed  Google Scholar 

  95. Rasouli N, Raue U, Miles LM, et al. Pioglitazone improves insulin sensitivity through reduction in muscle lipid and redistribution of lipid into adipose tissue. Am J Physiol Endocrinol Metab. 2005;288(5):E930-E934.

    Article  CAS  PubMed  Google Scholar 

  96. Ueno T, Sugawara H, Sujaku K, et al. Therapeutic effects of restricted diet and exercise in obese patients with fatty liver. J Hepatol. 1997;27(1):103-107.

    Article  CAS  PubMed  Google Scholar 

  97. Uygun A, Kadayifci A, Isik AT, et al. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2004;19(5):537-544.

    Article  CAS  PubMed  Google Scholar 

  98. Harrison SA, Fincke C, Helinski D, Torgerson S, Hayashi P. A pilot study of orlistat treatment in obese, non-alcoholic steatohepatitis patients. Aliment Pharmacol Ther. 2004;20(6): 623-628.

    Article  CAS  PubMed  Google Scholar 

  99. Lee Y, Naseem RH, Park BH, et al. Alpha-lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice. Biochem Biophys Res Commun. 2006;344(1):446-452.

    Article  CAS  PubMed  Google Scholar 

  100. Dixon JB. Surgical treatment for obesity and its impact on non-alcoholic steatohepatitis. Clin Liver Dis. 2007;11(1):141-14x.

    Article  PubMed  Google Scholar 

  101. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171-176.

    Article  CAS  PubMed  Google Scholar 

  102. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106-1118.

    Article  PubMed  Google Scholar 

  103. Clark JB, Palmer CJ, Shaw WN. The diabetic Zucker fatty rat. Proc Soc Exp Biol Med. 1983;173(1):68-75.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the editorial support of Ms. Hadley Armstrong.

The author was supported by the National Institutes of Health Grant R01-DK081423-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khashayar Sakhaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Sakhaee, K. (2010). Uric Acid Metabolism and Uric Acid Stones. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics