Skip to main content

Congestion Control in Wireless Ad Hoc Networks

  • Chapter
  • First Online:
Guide to Wireless Ad Hoc Networks

Part of the book series: Computer Communications and Networks ((CCN))

  • 1572 Accesses

Abstract

Multi-hop Wireless Networks (MHWNs) are anticipated to play an important role at the edge of the Internet, enabling a large number of innovative applications. The great demand for capacity from a large number of users and applications, coupled with the sparse bandwidth available on the wireless channel, place particular emphasis on effective congestion management approaches. Effective and well-studied algorithms for congestion control at the transport layer exist in wired networks. However, for a number of reasons, these approaches do not translate directly to wireless environments. In this chapter, we first describe the problem of congestion control in MHWNs, and discuss approaches for solving it. The presentation is organized into two components: (1) a review of the causes of congestion and algorithms for congestion avoidance in MHWNs at different layers of protocol stack; and (2) a review of analytical models for the rate control problem and their use for congestion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A queuing system is stable when the queue lengths at every node is bounded.

  2. 2.

    This formulation enables a single route for each connection. It can be easily extended to support multiple routes per connection [47].

References

  1. A. Adya, P. Bahl, J. Padhye, A.Wolman, and L. Zhou. A multi-radio unification protocol for IEEE 802.11 wireless networks. In BroadNets, 2004.

    Google Scholar 

  2. G.-S. Ahn, L.-H. Sun, A. Veres, and A. Campbell. SWAN: service differentiation in stateless wireless ad hoc networks. In Proc. of Infocom 2002, 2002.

    Google Scholar 

  3. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1993.

    MATH  Google Scholar 

  4. I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a survey. In Computer Networks, 47(4):445–487, 2005.

    Google Scholar 

  5. M. Allman, V. Paxson, and W. Stevens. TCP congestion control, 1999.

    Google Scholar 

  6. V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW: A media access protocol for wireless LANs. In SIGCOMM, 1994.

    Google Scholar 

  7. R. R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin. Throughput analysis in multihop CSMA packet radio networks. IEEE Trans. on Communication, 1987.

    Google Scholar 

  8. J. Broch, D. A. Maltz, D. B. Johnson, Y-C. Hu, and J. Jetcheva. A performance comparison of multi-hop wireless ad hoc network routing protocols. In MobiCom ’98: Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pages 85–97, ACM Press, New York, NY, USA, 1998, ISBN: 1-58113-035-X

    Chapter  Google Scholar 

  9. L. X. Bui, A. Eryilmaz, R. Srikant, and X. Wu. Joint asynchronous congestion control and distributed scheduling for multi-hop wireless networks. In INFOCOM, 2006.

    Google Scholar 

  10. Building the business case for implementation of wireless mesh networks, 2004.

    Google Scholar 

  11. M. M. Carvalho, and J. J. Garcia-Luna-Aceves. A scalable model for channel access protocols in multihop ad hoc networks. In MobiCom, 2004.

    Google Scholar 

  12. A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin. Temporal properties of low power wireless links: modeling and implications on multi-hop routing. In MobiHoc ’05, 2005.

    Google Scholar 

  13. K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A feedback based scheme for improving TCP performance in ad-hoc wireless networks. In ICDCS ’98: Proceedings of the 18th International Conference on Distributed Computing Systems, page 472, IEEE Computer Society, Washington, DC, USA, 1998.

    Google Scholar 

  14. C. Chaudet, I. G. Lassous, E. Thierry, and B. Gaujal. Study of the impact of asymmetry and carrier sense mechanism in IEEE 802.11 multi-hops networks through a basic case. In PE-WASUN ’04: Proceedings of the 1st ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, pages 1–7, New York, NY, USA, 2004. ACM Press, New York, NY.

    Chapter  Google Scholar 

  15. L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Cross-layer congestion control, routing and scheduling design in ad hoc wireless networks. In INFOCOM, 2006.

    Google Scholar 

  16. M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimization decomposition: A mathematical theory of network architectures. In Proceedings of IEEE, 2007.

    Google Scholar 

  17. J. Cox, Network World. Philadelphia wireless win launches earthlink new strategy, October 2005. http://www.networkworld.com/news/2005/100605-earthlink-wireless.html

  18. D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path metric for multi-hop wireless routing. In MobiCom ’03, 2003.

    Google Scholar 

  19. R. Draves, J. Padhye, and B. Zill. Comparison of routing metrics for static multi-hop wireless networks. In SIGCOMM, 2004.

    Google Scholar 

  20. R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh networks. In MobiCom ’04: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pages 114–128, New York, NY, USA, 2004. ACM Press, New York, NY

    Chapter  Google Scholar 

  21. T. D. Dyer, and R. V. Boppana. A comparison of TCP performance over three routing protocols for mobile ad hoc networks. In MobiHoc ’01: Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing, pages 56–66, New York, NY, USA, 2001. ACM Press, New York, NY.

    Chapter  Google Scholar 

  22. S. Floyd. TCP and explicit congestion notification. SIGCOMM Comput. Commun. Rev., 24(5):8–23, 1994.

    Article  MathSciNet  Google Scholar 

  23. S. Floyd, and K. Fall. Promoting the use of end-to-end congestion control in the internet. IEEE/ACM Trans. Netw., 7(4):458–472, 1999.

    Article  Google Scholar 

  24. Y. Gao, D-M. Chiu, and J. C.S. Lui. Determining the end-to-end throughput capacity in multi-hop networks: methodology and applications. SIGMETRICS Perform. Eval. Rev., 34(1):39–50, 2006.

    Article  Google Scholar 

  25. M. Garetto, T. Salonidis, and E. W. Knightly. Modeling per-flow throughput and capturing starvation in CSMA multi-hop wireless networks. In IEEE INFOCOM, 2006.

    Google Scholar 

  26. M. Garetto, J. Shi, and E. W. Knightly. Modeling media access in embedded two-flow topologies of multi-hop wireless networks. In MobiCom ’05, pages 200–214, 2005.

    Google Scholar 

  27. M. Gerla, K. Tang, and R. Bagrodia. TCP performance in wireless multi-hop networks. In WMCSA ’99: Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications, page 41, IEEE Computer Society, Washington, DC, USA, 1999.

    Chapter  Google Scholar 

  28. T. Goff, N. Abu-Ghazaleh, D. Phatak, and R. Kahvecioglu. Preemptive routing in ad hoc networks. J. Parallel Distrib. Comput., 63(2):123–140, 2003, ISSN: 0743-7315.

    Article  MATH  Google Scholar 

  29. J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The platforms enabling wireless sensor networks. In Communications of the ACM, 47(6): 41–46, 2004, ISSN: 0001-0782.

    Google Scholar 

  30. G. Holland, and N. Vaidya. Analysis of TCP performance over mobile ad hoc networks. Wirel. Netw., 8(2/3):275–288, 2002.

    Article  MATH  Google Scholar 

  31. G. Holland and N. H. Vaidya. Impact of routing and link layers on TCP performance in mobile ad hoc networks. In IEEE Wireless Communications and Networking Conference (WCNC), volume 3, pages 1323–1327, 1999.

    Google Scholar 

  32. IEEE 802.11e: Wireless medium access control (MAC) and physical layer (PHY) specifications: Medium access control (MAC) enhancements for quality of service (QoS).

    Google Scholar 

  33. V. Jacobson. Congestion avoidance and control. SIGCOMM Comput. Commun. Rev., 25(1):157–187, 1995.

    Article  Google Scholar 

  34. J. Jaffe. Bottleneck flow control. IEEE Transactions on Communications, 29:954–962, 1981.

    Article  MathSciNet  Google Scholar 

  35. K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on multi-hop wireless network performance. In MobiCom, 2003.

    Google Scholar 

  36. C. Jin, D. Wei, S. H. Low, J. Bunn, H. D. Choe, J. C. Doyle, H. Newman, S. Ravot, S. Singh, F. Paganini, G. Buhrmaster, L. Cottrell, O. Martin, and W. C. Feng. Fast TCP: from theory to experiments. In IEEE Network, volume 19, pages 4–11, 2005.

    Google Scholar 

  37. D. B. Johnson, D. A. Maltz, Y-C. Hu, and J. G. Jetcheva. The dynamic source routing protocol for mobile ad hoc networks (DSR), 2002.

    Google Scholar 

  38. S-S. Kang, and M. W. Mutka. Provisioning service differentiation in ad hoc networks by modification of the backoff algorithm. In Computer Communications and Networks, 2001.

    Google Scholar 

  39. F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3):237–252, 1998.

    MATH  Google Scholar 

  40. L. Kleinrock, and F. Tobagi. Packet switching in radio channels. In IEEE Transactions on Communications, 23(12):1400–1433, 1975 (Part I and Part II), ISSN: 0096-2244.

    Google Scholar 

  41. M. Kodialam, and T. Nandagopal. Characterizing achievable rates in multi-hop wireless networks: the joint routing and scheduling problem. In MobiCom, 42–54, 2003, ISBN: 58113-753-2.

    Google Scholar 

  42. C. E. Koksal, H. Kassab, and H. Balakrishnan. An analysis of short-term fairness in wireless media access protocols (poster session). In SIGMETRICS ’00: Proceedings of the 2000 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pages 118–119, ACM, New York, NY, USA, 2000.

    Chapter  Google Scholar 

  43. V. Kolar, and N. Abu-Ghazaleh. Scheduling aware network flow models for multi-hop wireless networks. In IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WOWMOM), 2008.

    Google Scholar 

  44. V. Kolar, and N. B. Abu-Ghazaleh. A multi-commodity flow approach to globally aware routing in multi-hop wireless networks. In IEEE PerCom, 2006.

    Google Scholar 

  45. V. Kolar and N. B. Abu-Ghazaleh. Towards interference-aware routing for real-time traffic in multi-hop wireless networks. In IEEE Distributed Simulation and Real Time Applications, 2007.

    Google Scholar 

  46. J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris. Capacity of ad hoc wireless networks. In MobiCom, 2001.

    Google Scholar 

  47. X. Lin, and N. B. Shroff. Joint rate control and scheduling in multihop wireless networks. 43rd IEEE Conference on Decision and Control, 2:1484–1489, 2004.

    Google Scholar 

  48. X. Lin, and N. B. Shroff. The impact of imperfect scheduling on cross-layer congestion control in wireless networks. IEEE/ACM Trans. Netw., 14(2):302–315, 2006.

    Article  Google Scholar 

  49. J. Liu and S. Singh. ATCP: TCP for mobile ad hoc networks. In IEEE Journal on Selected Areas in Communications, 19: 1300–1315, July 2001.

    Article  Google Scholar 

  50. Madwifi. http://madwifi.org/

  51. Meshdynamics inc. http://www.meshdynamics.com/

  52. J. Mo, and J. Walrand. Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw., 8(5):556–567, 2000.

    Article  Google Scholar 

  53. C. H. Papadimitriou, and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

    MATH  Google Scholar 

  54. J. C. Park and S. K. Kasera. Expected data rate: an accurate high-throughput path metric for multi-hop wireless routing. In SECON: Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2005.

    Google Scholar 

  55. C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector (AODV) Routing, 2003.

    Google Scholar 

  56. T. Rappaport. Wireless Communications: Principles and Practice. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

    Google Scholar 

  57. S. Razak, V. Kolar, and N. Abu-Ghazaleh. Modeling and analysis of two-flow interactions in wireless networks. In Fifth Annual Conference on Wireless On Demand Network Systems and Services(WONS), 2008.

    Google Scholar 

  58. J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM Trans. Comput. Syst., 2(4):277–288, 1984.

    Article  Google Scholar 

  59. E. Setton, X. Zhu, and B. Girod. Congestion-optimized scheduling of video over wireless ad hoc networks. In IEEE International Symposium on Circuits and Systems (ISCAS), volume 4, pages 3531–3534, 2005.

    Google Scholar 

  60. K. Sundaresan, V. Anantharaman, H-Y. Hsieh, and R. Sivakumar. ATP: a reliable transport protocol for ad-hoc networks. In MobiHoc ’03: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing, pages 64–75, ACM Press, New York, NY, USA, 2003.

    Chapter  Google Scholar 

  61. P. Sinha, J. P. Monks, and V. Bharghavan. Limitations of TCP-ELFN for ad hoc networks. In MOMUC, 2000.

    Google Scholar 

  62. A.S. Tanenbaum. Computer Networks, 3rd ed. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1996.

    Google Scholar 

  63. The IEEE Working Group for WLAN Standards. IEEE 802.11 Wireless Local Area Networks. http://grouper.ieee.org/groups/802/11/, 2002.

  64. F. A. Tobagi, and J. M. Brazio. Throughput analysis of multihop packet radio network under various channel access schemes. IEEE INFOCOM, 1983.

    Google Scholar 

  65. X. Wang, and K. Kar. Throughput modelling and fairness issues in CSMA/CA based ad-hoc networks. In INFOCOM, 2005.

    Google Scholar 

  66. D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast TCP: motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw., 14(6):1246–1259, 2006.

    Article  Google Scholar 

  67. X. Wu and R. Srikant. Regulated maximal matching: a distributed scheduling algorithm for multi-hop wireless networks with node-exclusive spectrum sharing. 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05, pages 5342– 5347, 2005.

    Google Scholar 

  68. K. Xu, M. Gerla, and S. Bae. How effective is the IEEE 802.11 RTS/CTS Handshake in Ad Hoc Networks? In Globecom, 2002.

    Google Scholar 

  69. S. Xu and T. Saadawi. Revealing the problems with 802.11 medium access control protocol in multi-hop wireless ad hoc networks. Computer Networks, 38(4):531–548, 2002.

    Article  Google Scholar 

  70. Yaling Yang, Jun Wang, and Robin Kravets. Designing routing metrics for mesh networks. In WiMesh: First IEEE Workshop on Wireless Mesh Networks, 2005.

    Google Scholar 

  71. Xin Yu. Improving TCP performance over mobile ad hoc networks by exploiting cross-layer information awareness. In MobiCom ’04: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pages 231–244, ACM, New York, NY, USA, 2004

    Google Scholar 

  72. H. Zhang, A. Arora, and P. Sinha. Learn on the fly: data-driven link estimation and routing in sensor network backbones. In 25th IEEE International Conference on Computer Communications (INFOCOM), 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kolar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kolar, V., Tilak, S., Abu-Ghazaleh, N. (2009). Congestion Control in Wireless Ad Hoc Networks. In: Misra, S., Woungang, I., Chandra Misra, S. (eds) Guide to Wireless Ad Hoc Networks. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84800-328-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-328-6_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-327-9

  • Online ISBN: 978-1-84800-328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics