Advertisement

Soft Computing Essentials

  • Andre de KorvinEmail author
  • Hong Lin
  • Plamen Simeonov
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Keywords

Particle Swarm Optimization Membership Function Fuzzy System Fuzzy Subset Fuzzy Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandler, W., Kohout, L.J.: On the general theory of relational morphisms. International Journal of General Systems 13, 47–68 (1986)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Berenji, H.R., Khedkar, P.: Learning and tuning fuzzy logic controllers through reinforcements. IEEE Transactions on Neural Networks 3(5), 724–740 (1992)CrossRefGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: R. Slovinski (ed.) Intelligent Decision Support, pp. 203–232. Kluwer Academic Publishers, Norwell, MA (1992)Google Scholar
  4. 4.
    Eberhart, R.C., Shi, Y.: Particle swarm optimization: Developments, applications, and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, pp. 81–86. IEEE Press, Los Alamitos, CA (2001)Google Scholar
  5. 5.
    Grossberg, S.: A neural model of attention, reinforcement and discrimination learning. International Review of Neurobiology 18, 263–327 (1975)CrossRefGoogle Scholar
  6. 6.
    Hagan, M., Demuth, H., Beale, M.: Neural Network Design. PWS Publishing Company, Boston, MA (1996)Google Scholar
  7. 7.
    Harmanec, D., Klir, G.J.: Measuring total uncertainty in Dempster-Shafer theory: A novel approach. International Journal of General Systems 22(4), 405–419 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. MacMillan, New York (1994)zbMATHGoogle Scholar
  9. 9.
    Hecht–Nielsen, R.: Counterpropagation networks. In: M. Caudill, C. Butler (eds.) IEEE First International Conference on Neural Networks (ICNN’87), Vol. II, pp. II-19–32. IEEE, San Diego, CA (1987)Google Scholar
  10. 10.
    Hellendorn H., Thomas C.: Defuzzification in fuzzy controllers. Journal of Intelligent and Fuzzy Systems, 1(2), 109-123 (1993)Google Scholar
  11. 11.
    Hinton, G., Sejnowski, T.: Learning and relearning in Boltzmann machines. In: Rummelhart, D., McClelland, J. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations, pp. 283–335, MIT Press, Cambridge, MA. (1986)Google Scholar
  12. 12.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  13. 13.
    Jang, J.S.R.: Fuzzy modeling using generalized neural networks and Kalman filter algorithm. In: Proceedings of the Ninth National Conference on Artificial Inteligence (AAAI–91), pp. 762–767 (1991)Google Scholar
  14. 14.
    Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23, 665–684 (1993)CrossRefGoogle Scholar
  15. 15.
    Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, Englewood Cliff, NJ (1997)Google Scholar
  16. 16.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Service Center, Piscataway, NJ (1995)Google Scholar
  17. 17.
    Klir, G.J.: Developments in uncertainty-based information. Advances in Computers 36, 255–332 (1993)Google Scholar
  18. 18.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice-Hall, Englewood Cliff, NJ (1995)zbMATHGoogle Scholar
  19. 19.
    de Korvin, A., Deeba, E., Kleyle, R.: Knowledge acquisition using rough sets when membership values are intervals. Mathematical Modeling and Scientific Computing 1, 470–479 (1993)Google Scholar
  20. 20.
    de Korvin, A., Hashemi, S., Sirisaengtaksin, O.: A body of evidence approach under partially specified environment. Journal of Neural, Parallel and Scientific Computation 13, 91-106 (2005)zbMATHGoogle Scholar
  21. 21.
    de Korvin, A., Kleyle, R., Lea, R.: An evidence approach to problem solving when a large number of knowledge systems are available. International Journal of Intelligent Systems 5, 293–306 (1990)zbMATHCrossRefGoogle Scholar
  22. 22.
    de Korvin, A., Modave, F., Kleyle, R.: Paradigms for decision making under increasing levels of uncertainty. International Journal of Pure and Applied Mathematics 21, 419–430 (2005)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Kosko, B.: Bidirectional associative memories. IEEE Transactions on Systems, Man, and Cybernetics 18, 49–60 (1988)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Lee, M.A., Takagi, H.: Dynamic control of genetic algorithms using fuzzy logic techniques. In: S. Forrest (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 76–83. Morgan Kaufmann, San Mateo, CA (1993)Google Scholar
  25. 25.
    Mabuchi, S.: A proposal for defuzzification strategy by the concept of sensitivity analysis. Fuzzy Sets and Systems 55, 1–14 (1993)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mamdami, E.H., Gaines, B.R. (eds.): Fuzzy Reasoning and Its Applications. Academic Press, London (1981)Google Scholar
  27. 27.
    Mamdani, E.H.: Applications of fuzzy logic to approximate reasoning using linguistic systems. IEEE Transactions on Computing 26, 1182–1191 (1977)zbMATHCrossRefGoogle Scholar
  28. 28.
    Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River, NJ (2001)zbMATHGoogle Scholar
  29. 29.
    Mendel, J.: On the importance of interval sets in type-2 fuzzy logic systems. In: Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, pp. 1647–1652 (2001)Google Scholar
  30. 30.
    Mendel, J., John, R.: Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems 10(2), 117–127 (2002)CrossRefGoogle Scholar
  31. 31.
    Mizutani, E., Jang, J.S.R.: Coactive neural fuzzy modeling. In: IEEE International Conference on Neural Networks (ICNN’95), Vol. 2, pp. 760–765. IEEE, Perth, Western Australia (1995)Google Scholar
  32. 32.
    Mizutani, E., Jang, J. S. R., Nishio, K., Takagi, H., Auslander, D. M.: Coactive neural networks with adjustable fuzzy membership functions and their applications. In: International Conference on Fuzzy Logic and Neural Networks, pp. 581–582 (1994)Google Scholar
  33. 33.
    Mrózek, A.: Rough sets and some aspects of expert systems realization. In: Seventh Workshop on Expert Systems and their Applications, pp. 597–611 (1987)Google Scholar
  34. 34.
    Ovchinikov S. V.: Representation of transitive fuzzy relations. In: Skala, Termini, and Trillas (eds.) Aspects of Vagueness, 105–118, Boston, MA (1984)Google Scholar
  35. 35.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Ruan, D., Kerre, E.E.: Fuzzy implication operators and generalized fuzzy method of cases. Fuzzy Sets Systems 54(1), 23–37 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Saaty, T.L.: Modeling unstructured decision problems: A theory of analytical hierarchies. In: Proceedings of the First International Conference on Mathematical Modeling, University of Missouri- Rolla, Vol. 1, pp. 59–77 (1977)Google Scholar
  38. 38.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw–Hill, New York (1980)zbMATHGoogle Scholar
  39. 39.
    Skapura, D.M.: Building Neural Networks. ACM Press/Addison–Wesley Publishing Co., New York, NY, USA (1995)Google Scholar
  40. 40.
    Takagi, H., Hayashi, I.: NN–driven fuzzy reasoning. International Journal Approximate Reasoning 5, 191–212 (1991)zbMATHCrossRefGoogle Scholar
  41. 41.
    Takagi, H.: Fusion techniques of fuzzy systems and neural networks, and fuzzy systems and genetic algorithms. In: B. Bosacchi, J.C. Bezdek (eds.) Applications of Fuzzy Logic Technology, Proc. of the Society of Photo–Optical Instrumentation Engineers (SPIE) Conference, SPIE Vol. 2061, pp. 402–413 (1993)Google Scholar
  42. 42.
    Tong, R.M.: An annotated bibliography of fuzzy control. In: M. Sugeno (ed.) Industrial Applications of Fuzzy Control, pp. 249–269. Elsevier Science Publishers, Amsterdam (1985)Google Scholar
  43. 43.
    Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets and Systems 11, 115–134 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Yager, R.R.: Approximate reasoning as a basis for rule based expert systems. IEEE Transactions on Systems, Man and Cybernetics 14 (1984)Google Scholar
  45. 45.
    Yager, R.R., Filev, D.P.: On the issue of defuzzification and selection based on a fuzzy set. Fuzzy Sets and Systems 55, 255–273 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2008

Authors and Affiliations

  1. 1.Department of Computer and Mathematical SciencesUniversity of HoustonHoustonUSA

Personalised recommendations