Advertisement

Fundamentals of Interval Computing

  • Ralph Baker KearfottEmail author
  • Chenyi Hu
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aberth, O., Schaefer, M.J.: Precise matrix eigenvalues using range arithmetic. SIAM Journal on Matrix Analysis and Applications 14(1), 235–241 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alefeld, G., Herzberger, J.: Einföhrung in die Intervallrechnung. Springer-Verlag, Berlin, (1974)Google Scholar
  3. 3.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press Inc., New York (1983)zbMATHGoogle Scholar
  4. 4.
    Alefeld, G.: Componentwise inclusion and exclusion sets for solutions of quadratic equations in finite-dimensional spaces. Numerische Mathematik 48(4), 391–416 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alefeld, G., Spreuer, H.: Iterative improvement of componentwise errorbounds for invariant subspaces belonging to a double or nearly double eigenvalue. Computing 36, 321–334 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Behnke, H.: Inclusion of eigenvalues of general eigenvalue problems for matrices. In: U. Kulisch, H.J. Stetter (eds.) Scientific Computation with Automatic Result Verification, Computing. Supplementum, Vol. 6, pp. 69–78. Springer, New York (1988)Google Scholar
  7. 7.
    Behnke, H.: Bounds for eigenvalues of parameter-dependent matrices. Computing 49(2), 159–167 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Behnke, H., Mertins, U.: Bounds for eigenvalues with the use of finite elements. In: U. Kulisch, R. Lohner, A. Facius (eds.) Perspectives on Enclosure Methods: GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, September 2000, Karlsruhe, Germany, 119–132. Kluwer Academic Publishers, Amsterdam (2001)Google Scholar
  9. 9.
    Berz, M., Makino, K., Shamseddine, K., Hoffstätter, G.H., Wan, W.: COSY INFINITY and its applications to nonlinear dynamics. In: M. Berz, C. Bischof, G. Corliss, A. Griewank (eds.) Computational Differentiation: Techniques, Applications, and Tools, 363–365. SIAM, Philadelphia (1996)Google Scholar
  10. 10.
    Berz, M.: COSY INFINITY web page http://cosy.pa.msu.edu/cosy.pa.msu.edu (2000)
  11. 11.
    Brönnimann, H., Melquiond, G., Pion, S.: A proposal to add interval arithmetic to the C++ Standard Library. Technical proposal N1843-05-0103, CIS, Brooklyn Polytechnic University, S Brooklyn (2005)Google Scholar
  12. 12.
    Chen, S., Qiu, Z., Liu, Z.: A method for computing eigenvalue bounds in structural vibration systems with interval parameters. Computers and Structures 51(3), 309 (1994)zbMATHCrossRefGoogle Scholar
  13. 13.
    Chen, S., Qiu, Z., Liu, Z.: Perturbation method for computing eigenvalue bounds in structural vibration systems with interval parameters. Communications in Applied Numerical Methods 10(2), 121–134 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Corliss, G.F., Yu, J.: Testing COSY’s interval and Taylor model arithmetic. In: R. Alt, A. Frommer, R.B. Kearfott, W. Luther (eds.) Numerical Software with Result Verification: Platforms, Algorithms, Applications in Engineering, Physics, and Economics, Lectures Notes in Computer Science, No. 2992, pp. 91–105. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Gau, C.Y., Stadtherr, M.A.: New interval methodologies for reliable chemical process modeling. Computers and Chemical Engineering 26, 827–840 (2002)CrossRefGoogle Scholar
  16. 16.
    Gau, C.Y., Stadtherr, M.A.: Dynamic load balancing for parallel interval-Newton using message passing. Computers and Chemical Engineering 26, 811–815 (2002)CrossRefGoogle Scholar
  17. 17.
    Gioia, F., Lauro, C.N.: Principal component analysis on interval data. Computational Statistics 21(2), 343–363 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hansen, E.R., Walster, W.: Global Optimization Using Interval Analysis, 2nd ed. Marcel Dekker, New York (2003)Google Scholar
  19. 19.
    Hargreaves, G.I.: Interval analysis in MATLAB. Master’s thesis, Department of Mathematics, University of Manchester (2002)Google Scholar
  20. 20.
    Jaulin, L., Keiffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer-Verlag, Berlin (2001)zbMATHGoogle Scholar
  21. 21.
    Kalmykov, S.A.: To the problem of determination of the symmetric matrix eigenvalues by means of the interval method. In: Numerical Analysis, Collect. Sci. Works, pp. 55–59. Sov. Acad. Sci., Sib. Branch, Inst. Theor. Appl. Mech., Novosibirsk, USSR (1978) (in Russian)Google Scholar
  22. 22.
    Kearfott, R.B.: A Fortran 90 environment for research and prototyping of enclosure algorithms for nonlinear equations and global optimization. ACM Transactions on Mathematical Software 21(1), 63–78 (1995)zbMATHCrossRefGoogle Scholar
  23. 23.
    Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Nonconvex Optimization and Its Applications. No. 13. Kluwer Academic, Norwell, MA (1996)Google Scholar
  24. 24.
    Kearfott, R.B.: Verified branch and bound for singular linear and nonlinear programs: An epsilon-inflation process (April 2007), SubmittedGoogle Scholar
  25. 25.
    Kearfott, R.B.: GlobSol User Guide. Optimization Methods and Software (2008). SubmittedGoogle Scholar
  26. 26.
    Knöppel, O.: PROFIL/BIAS - A fast interval library. Computing 53(3–4), 277–287 (1994)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Knöppel, O.: PROFIL/BIAS v 2.0. Bericht 99.1, Technische Universität Hamburg-Harburg, Harburg, Germany (1999). Available from http://www.ti3.tu-harburg.de/profil_e
  28. 28.
    Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations, Applied Optimization, Vol. 10. Kluwer Academic, Norwell, MA (1998)Google Scholar
  29. 29.
    Kulisch, U.W., Miranker, W.L.: Computer Arithmetic in Theory and Practice. Computer Science and Applied Mathematics. Academic Press Inc., New York (1981)Google Scholar
  30. 30.
    Lee, D., Mavroidis, C., Merlet, J.P.: Five precision point synthesis of spatial RRR manipulators using interval analysis. Journal of Mechanical Design 126, 842–849 (2004)CrossRefGoogle Scholar
  31. 31.
    Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W., Krämer, W.: FILIB++, a fast interval library supporting containment computations. ACM Transactions on Mathematical Software 32(2), 299–324 (2006)CrossRefGoogle Scholar
  32. 32.
    Lin, Y., Stadtherr, M.A.: Advances in interval methods for deterministic global optimization in chemical engineering. Journal of Global Optimization 29, 281–296 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lin, Y., Stadtherr, M.A.: Lp strategy for interval-Newton method in deterministic global optimization. Industrial & Engineering Chemistry Research, 43, 3741–3749 (2004)CrossRefGoogle Scholar
  34. 34.
    Lin, Y., Stadtherr, M.A.: Locating stationary points of sorbate-zeolite potential energy surfaces using interval analysis. J. Chemical Physics, 121, 10159-10166 (2004)CrossRefGoogle Scholar
  35. 35.
    Lin, Y., Stadtherr, M.A.: Deterministic global optimization of molecular structures using interval analysis. J. Computational Chemistry 26, 1413–1420 (2005)CrossRefGoogle Scholar
  36. 36.
    Moore, R.E.: Interval arithmetic and automatic error analysis in digital computing. Ph.D. dissertation, Department of Mathematics, Stanford University, Stanford, CA (1962)Google Scholar
  37. 37.
    Moore, R.E.: Interval Analysis. Prentice–Hall, Upper Saddle River, NJ (1966)zbMATHGoogle Scholar
  38. 38.
    Moore, R.E.: Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (1979)zbMATHGoogle Scholar
  39. 39.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval algorithms and their applications with INTLAB: a MATLAB toolkit. SubmittedGoogle Scholar
  40. 40.
    Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications, Vol. 37. Cambridge University Press, Cambridge (1990)Google Scholar
  41. 41.
    Neumaier, A.: Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  42. 42.
    Neumaier, A., Pownuk, A.: Linear systems with large uncertainties, with applications to truss structures. Reliable Computing 13, 149–172 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Nooner, M., Hu, C.: A computational environment for interval matrices. In: R.L. Muhanna, R.L. Mullen (eds.) Proceedings of 2006 Workshop on Reliable Engineering Computing, pp. 65–74. Georgia Tech. University, Savanna (2006). http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html
  44. 44.
    Oishi, S.: Fast enclosure of matrix eigenvalues and singular values via rounding mode controlled computation. Linear Algebra and its Applications 324(1–3), 133–146 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Plum, M.: Computer-assisted enclosure methods for elliptic differential equations. Linear Algebra and its Applications 324(1–3), 147–187 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Rohn, J., Deif, A.: On the range of eigenvalues of an interval matrix. Computing 47(3–4), 373–377 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Rohn, J.: Interval matrices: Singularity and real eigenvalues. SIAM Journal on Matrix Analysis and Applications 14(1), 82–91 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Rump, S.M.: INTLAB-INTerval LABoratory. In: T. Csendes (ed.) Developments in Reliable Computing: Papers presented at the International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, Vol. 5(3), pp. 77–104. Kluwer Academic, Norwell, MA (1999)Google Scholar
  49. 49.
    Rump, S.M.: INTLAB - INTerval LABoratory (1999-2008) http://www.ti3.tu-harburg.de/rump/intlab/
  50. 50.
    Stadtherr, M.A.: Interval analysis: Application to phase equilibrium problems. In: A. Iserles (ed.) Encyclopedia of Optimization. Kluwer Academic, Norwell, MA (2001)Google Scholar
  51. 51.
    Stadtherr, M.A.: Interval analysis: Application to chemical engineering design problems. In: A. Iserles (ed.) Encyclopedia of Optimization. Kluwer Academic, Norwell, MA (2001)Google Scholar
  52. 52.
    Sun: Sun studio math libraries (1994-2007). Available from http://developers.sun.com/sunstudio/documentation/libraries/math_libraries.jsp
  53. 53.
    Sunaga, T.: Theory of interval algebra and its application to numerical analysis. RAAG Memoirs 2, 29–46 (1958)Google Scholar
  54. 54.
    Wieners, C.: A parallel Newton multigrid method for high order finite elements and its application on numerical existence proofs for elliptic boundary value equation. Zeitschrift för Angewandte Mathematik und Mechanik 76, 171–176 (1996)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA
  2. 2.Department of Computer ScienceUniversity of Central ArkansasConwayUSA

Personalised recommendations