Skip to main content

SAD-Based Stereo Matching Using FPGAs

  • Chapter
Embedded Computer Vision

Abstract

In this chapter we present a field-programmable gate array (FPGA) based stereo matching architecture. This architecture uses the sum of absolute differences (SAD) algorithm and is targeted at automotive and robotics applications. The disparity maps are calculated using 450×375 input images and a disparity range of up to 150 pixels. We discuss two different implementation approaches for the SAD and analyze their resource usage. Furthermore, block sizes ranging from 3×3 up to 11×11 and their impact on the consumed logic elements as well as on the disparity map quality are discussed. The stereo matching architecture enables a frame rate of up to 600 fps by calculating the data in a highly parallel and pipelined fashion. This way, a software solution optimized by using Intel’s Open Source Computer Vision Library running on an Intel Pentium 4 with 3 GHz clock frequency is outperformed by a factor of 400.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, J., Bennamoun, M. and Corke, P.: Non-parametric techniques for fast and robust stereo matching, Proc. IEEE Conf. Speech Image Technol. Comput. Telecommun. (1997).

    Google Scholar 

  2. Bobick, A. and Intille, S.: Large occlusion stereo, Intern. J. Comput. Vis. 33(3), 181–200 (1999).

    Article  Google Scholar 

  3. Corke, P. and Dunn, P.: Real-time stereopsis using FPGAs, Proc. IEEE Conf. Speech Image Technol. Comput. Telecommun. (1997).

    Google Scholar 

  4. Han, D. and Hwang, D.: A novel stereo matching method for wide disparity range detection, Lect. Notes Comput. Sci. 3656, 643–650 (2005).

    Article  Google Scholar 

  5. Kanade, T.: Development of a video-rate stereo machine, Proc. 1994 ARPA Image Underst. Work. (1994).

    Google Scholar 

  6. Kanade, T., Yoshida, A., Kazuo, O., Kano, H. and Tanaka, M.: A stereo machine for video-rate dense depth mapping and its new applications, Proc. 1996 Conf. Comput. Vis. Pattern Recognit. Work. (1996).

    Google Scholar 

  7. Kim, S., Choi, S., Won, S. and Jeong, H.: The coil recognition system for an unmanned crane using stereo vision, Proc. 30th Conf. IEEE Ind. Electron. Soc. (2004).

    Google Scholar 

  8. Le Beux, S., Marquet, P., Labbani, O. and Dekeyser, J.: FPGA implementation of embedded cruise control and anti-collision radar, Proc. 9th EUROMICRO Conf. Digit. Syst. Des. (2006).

    Google Scholar 

  9. Lee, Su., Yi, J. and Kim, J.: Real-time stereo vision on a reconfigurable system, Lect. Notes Comput. Sci. 3553, 299–307 (2005).

    Article  Google Scholar 

  10. Masrani, D.K. and MacLean, W.J.: A real-time large disparity range stereo-system using FPGAs, Proc. IEEE Intern. Conf. Comput. Vis. Syst. (2006).

    Google Scholar 

  11. Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., Goldberg, S., Huertas, A., Stein, A. and Angelova, A.: Computer vision on Mars, Intern. J. Comput. Vis. 75(1), 67–92 (2007).

    Article  Google Scholar 

  12. Miyajima, Y. and Maruyama, T.: A real-time stereo vision system with FPGA, Lect. Notes Comput. Sci. 2778, 448–457 (2003).

    Article  Google Scholar 

  13. Murphy, C., Lindquist, D., Rynning, A.M., Cecil, T., Leavitt, S. and Chang, M.: Low-cost stereo vision on an FPGA, Proc. 15th IEEE Symp. FPGAs Cust. Comput. Mach. (2007).

    Google Scholar 

  14. Niitsuma, H. and Maruyama, T.: Real-time detection of moving objects, Lect. Notes Comput. Sci. 3203, 1155–1157 (2004).

    Article  Google Scholar 

  15. Niitsuma, H. and Maruyama, T.: High-speed computation of the optical flow, Lect. Notes Comput. Sci. 3617, 287–295 (2005).

    Article  Google Scholar 

  16. Intel Open Source Computer Vision Library, Intel Corporation, Santa Clara, CA., www.intel.com/technology/computing/opencv/. Cited 13 Feb 2008.

  17. Prehn, S.: GPU Stereo Vision, Project Thesis, Robotics Research Lab, University of Kaiserslautern (2007).

    Google Scholar 

  18. Scharstein, D. and Szeliski, R.: High-accuracy stereo depth maps using structured light, Proc. 2003 Conf. Comput. Vis. Pattern Recognit. (2003).

    Google Scholar 

  19. Veksler, O.: Fast variable window for stereo correspondence using integral iImages, Proc. 2003 Conf. Comput. Vis. Pattern Recognit. (2003).

    Google Scholar 

  20. Woodfill, J. and Von Herzen, B.: Real-time stereo vision on the PARTS reconfigurable computer, Proc. 5th IEEE Symp. FPGAs Cust. Comput. Mach. (1997).

    Google Scholar 

  21. Woodfill, J.I., Gordon, G. and Buck, R.: The Tyzx DeepSea high-speed stereo vision system, Proc. 2004 Conf. Comput. Vis. Pattern Recognit. Work. (2004).

    Google Scholar 

  22. Woodfill, J.I., Gordon, G., Jurasek, D., Brown, T. and Buck, R.: The Tyzx DeepSea G2 vision system: A taskable, embedded stereo camera, Proc. 2006 Conf. Comput. Vis. Pattern Recognit. Work. (2006).

    Google Scholar 

  23. Yang, R. and Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware, Proc. 2003 Conf. Comput. Vis. Pattern Recognit. (2003).

    Google Scholar 

  24. Yi, J., Kim, J., Li, L., Morris, J., Lee, G. and Leclercq, P.: Real-time three-dimensional vision, Lect. Notes Comput. Sci. 3189, 309–320 (2004).

    Article  Google Scholar 

  25. Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review, Intern. J. Comput. Vis. 27(2), 161–195 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ambrosch, K., Humenberger, M., Kubinger, W., Steininger, A. (2009). SAD-Based Stereo Matching Using FPGAs. In: Kisačanin, B., Bhattacharyya, S.S., Chai, S. (eds) Embedded Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84800-304-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-304-0_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-303-3

  • Online ISBN: 978-1-84800-304-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics