Skip to main content

Challenges of Embedded Computer Vision in Automotive Safety Systems

  • Chapter
Embedded Computer Vision

Abstract

Vision-based automotive safety systems have received considerable attention over the past decade. Such systems have advantages compared to those based on other types of sensors such as radar, because of the availability of lowcost and high-resolution cameras and abundant information contained in video images. However, various technical challenges exist in such systems. One of the most prominent challenges lies in running sophisticated computer vision algorithms on low-cost embedded systems at frame rate. This chapter discusses these challenges through vehicle detection and classification in a collision warning system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Gern, U. Franke, P. Levi: Robust vehicle tracking fusing radar and vision. Proc. Int’l Conf. Multisensor Fusion and Integration for Intelligent Systems, 323–328 (2001).

    Google Scholar 

  2. B. Steus and C. Laurgeau and L. Salesse and D. Wautier: Fade: a vehicle detection and tracking system featuring monocular color vision and radar fusion. Proc. IEEE Intell. Veh. Symposium, 632–639 (2002).

    Google Scholar 

  3. T. Zielke, M. Brauckmann, W. V. Seelen: Intensity and edge-based symmetry detection with an application to car-following. CVGIP: Image Understanding, 58(2), 177–190 (1993).

    Article  Google Scholar 

  4. N.D. Matthews, P.E. An, D. Charnley, C. J. Harris: Vehicle detection and recognition in greyscale imagery. Control Engineering Practice, 4, 474–479 (1996).

    Article  Google Scholar 

  5. Z. Sun, G. Bebis, R. Miller: On-road vehicle detection using Gabor filters and support vector machines. Proc. Int’l Conf. on Digital Signal Processing, 2, 1019–1022 (2002).

    Google Scholar 

  6. Z. Sun, G. Bebis, R. Miller: Improving the performance of on-road vehicle detection by combining Gabor and wavelet features. Proc. IEEE Int’l Conf. Intelligent Transportation Systems, 130–135 (2002).

    Google Scholar 

  7. M. Betke, E. Haritaglu, L. Davis: Multiple vehicle detection and tracking in hard real time. Proc. IEEE Intell. Veh. Symposium, 2, 351–356 (2006).

    Google Scholar 

  8. S. Avidan: Support vector tracking. IEEE Trans. Pattern Anal. Machine Intell., 26(8), 1064–1072 (2004).

    Article  Google Scholar 

  9. Y. Zhang, S. J. Kiselewich, W. A. Bauson: Legendre and Gabor moments for vehicle recognition in forward collision warning. Proc. IEEE Int’l Conf. Intelligent Transportation Systems, 1185–1190 (2006).

    Google Scholar 

  10. M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T. Poggio: Pedestrian detection using wavelet templates. Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, 193–199 (1997).

    Google Scholar 

  11. Y. Zhang, S. J. Kiselewich, W. A. Bauson: A monocular vision-based occupant classification approach for smart airbag deployment. Proc. IEEE Intell. Veh. Symposium, 632–637 (2005).

    Google Scholar 

  12. C. Teh, R. T. Chin: On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Machine Intell., 10(4), 496–513 (1988).

    Article  MATH  Google Scholar 

  13. K. Levi, Y. Weiss: Learning object detection from a small number of examples: the importance of good features. Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, 2, 53–60 (2004).

    Google Scholar 

  14. W. T. Freeman, M. Roth: Orientation histograms for hand gesture recognition. Proc. IEEE Int’l Workshop Automatic Face and Gesture Recognition, 296–301 (1995).

    Google Scholar 

  15. D. G. Lowe: Distinctive image features from scale-invariant keypoints. Int’l Journal of Computer Vision, 60(2), 91–110 (2004).

    Article  Google Scholar 

  16. N. Dalal, B. Triggs: Histograms of oriented gradients for human detection. Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, 1, 886–893 (2005).

    Google Scholar 

  17. B. S. Manjunath, W. Y. Ma: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Machine Intell., 18(8), 837–842 (1996).

    Article  Google Scholar 

  18. T. Randen, J. H. Husoy: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Machine Intell., 21(4), 291–310 (1999).

    Article  Google Scholar 

  19. A. C. Bovik, M. Clark, W. Geisler: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Machine Intell., 12(1), 55–73 (1990).

    Article  Google Scholar 

  20. A. Jain, D. Zongker: Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Machine Intell., 19(2), 153–158 (1997).

    Article  Google Scholar 

  21. I. Guyon, A. Elisseeff: An introduction to variable and feature selection. Journal of Machine Learning, 1157–1182 (2003).

    Google Scholar 

  22. P. Viola, M. J. Jones: Robust real-time face detection. Int’l Journal of Computer Vision, 57(2), 137–154 (2004).

    Google Scholar 

  23. R. Quinlan: See5: An Informal Tutorial. http://www.rulequest.com/see5-win.html. (2007).

  24. K. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Schólkopf: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netork. 12(2), 181–202 (2001).

    Article  Google Scholar 

  25. Robert E. Schapire: The boosting approach to machine learning: an overview. MSRI Workshop on Nonlinear Estimation and Classification, (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhang, Y., Dhua, A.S., Kiselewich, S.J., Bauson, W.A. (2009). Challenges of Embedded Computer Vision in Automotive Safety Systems. In: Kisačanin, B., Bhattacharyya, S.S., Chai, S. (eds) Embedded Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84800-304-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-304-0_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-303-3

  • Online ISBN: 978-1-84800-304-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics