Skip to main content
  • 808 Accesses

Abstract

In the past, the treatment of carotid artery disease has been either conservative with medical therapy, or surgical, using carotid endarterectomy. Traditionally, diagnosis was made using duplex ultrasound and additional imaging consisting of selective carotid arteriography has been considered necessary to confirm the duplex findings, to clarify equivocal or unreliable duplex findings [1] (Table 5.1), to demonstrate or exclude tandem lesions (that may occur in up to 10% of cases [2]), and finally to obtain additional anatomical information (e.g., relation of carotid bifurcation and mandibular angle) (Fig. 5.1). Duplex ultrasound is used as the sole imaging test before carotid endarterectomy in some institutions, but in most instances there is a requirement for a less operator-dependent, reliable confirmatory noninvasive diagnostic test to improve confidence in correct patient selection [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Back MR, Rogers GA, Wilson JS, Johnson BL, Shames ML, Bandyk DF. Magnetic resonance angiography minimizes need for arteriography after inadequate carotid duplex ultrasound scanning. J Vasc Surg 2003; 38(3):422–430.

    Article  PubMed  Google Scholar 

  2. Borisch I, Horn M, Butz B et al., Preoperative evaluation of carotid artery stenosis: Comparison of contrast-enhanced MR angiography and duplex sonography with digital subtraction angiography. Am J Neuroradiol 2003; 24(6):1117–1122.

    PubMed  Google Scholar 

  3. Erdoes LS, Marek JM, Mills JL et al., The relative contributions of carotid duplex scanning, magnetic resonance angiography, and cerebral arteriography to clinical decision making: A prospective study in patients with carotid occlusive disease. J Vasc Surg 1996; 23(5):950–956.

    Article  PubMed  CAS  Google Scholar 

  4. Randoux B, Marro B, Koskas F et al., Carotid artery stenosis: Prospective comparison of CT, three-dimen sional gadolinium-enhanced MR, and conventional angiography. Radiology 2001; 220(1):179–185.

    PubMed  CAS  Google Scholar 

  5. Chong PL, Salhiyyah K, Dodd PD. The role of carotid endarterectomy in the endovascular era. Eur J Vasc Endovasc Surg 2005; 29(6):597–600.

    Article  PubMed  CAS  Google Scholar 

  6. Patel SG, Collie DA, Wardlaw JM et al., Outcome, observer reliability, and patient preferences if CTA, MRA, or Doppler ultrasound were used, individually or together, instead of digital subtraction angi-ography before carotid endarterectomy. J Neurol Neurosurg Psychiatry 2002; 73(1):21–28.

    Article  PubMed  CAS  Google Scholar 

  7. Johnston DC, Chapman KM, Goldstein LB. Low rate of complications of cerebral angiography in routine clinical practice. Neurology 2001; 57 (11): 2012–2014.

    Article  PubMed  CAS  Google Scholar 

  8. Berczi V, Randall M, Balamurugan R et al.,. Safety of arch aortography for assessment of carotid arteries. Eur J Vasc Endovasc Surg 2006; 31(1):3–7.

    Article  PubMed  CAS  Google Scholar 

  9. Kopp AF, Kuttner A, Trabold T, Heuschmid M, Schroder S, Claussen CD. Contrast-enhanced MDCT of the thorax. Eur Radiol 2003; 13(Suppl 3):N44–N49.

    Article  PubMed  Google Scholar 

  10. Catalano C, Fraioli F, Danti M et al., MDCT of the abdominal aorta: Basics, technical improvements, and clinical applications. Eur Radiol 2003; 13(Suppl 3):N53–N58.

    Article  PubMed  Google Scholar 

  11. Haage P, Schmitz-Rode T, Hubner D, Piroth W, Gunther RW. Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. Am J Roentgenol 2000; 174(4):1049–1053.

    CAS  Google Scholar 

  12. Silvennoinen HM, Ikonen S, Soinne L, Railo M, Valanne L. CT angiographic analysis of carotid artery stenosis: Comparison of manual assessment, semiautomatic vessel analysis, and digital subtraction angi-ography. Am J Neuroradiol 2007; 28 (1): 97–103.

    PubMed  CAS  Google Scholar 

  13. Siegel MJ. Multiplanar and three-dimensional multi-detector row CT of thoracic vessels and airways in the pediatric population. Radiology 2003; 229(3):641–650.

    Article  PubMed  Google Scholar 

  14. Sameshima T, Futami S, Morita Y et al.,. Clinical usefulness of and problems with three-dimensional CT angiography for the evaluation of arterioscle-rotic stenosis of the carotid artery: Comparison with conventional angiography, MRA, and ultrasound sonography.Surg Neurol 1999; 51(3):301–308.

    Article  PubMed  CAS  Google Scholar 

  15. Lee EY, Siegel MJ, Hildebolt CF, Gutierrez FR, Bhalla S, Fallah JH. MDCT evaluation of thoracic aortic anomalies in pediatric patients and young adults: Comparison of axial, multiplanar, and 3D images. Am J Roentgenol 2004; 182(3):777–784.

    Google Scholar 

  16. Smith PA, Heath DG, Fishman EK. Virtual angios-copy using spiral CT and real-time interactive volume-rendering techniques. J Comput Assist Tomogr 1998; 22(2):212–214.

    Article  PubMed  CAS  Google Scholar 

  17. Bartolozzi C, Neri E, Caramella D. CT in vascular pathologies. Eur Radiol 1998; 8(5):679–684.

    Article  PubMed  CAS  Google Scholar 

  18. Cinat M, Lane CT, Pham H, Lee A, Wilson SE, Gordon I. Helical CT angiography in the preopera-tive evaluation of carotid artery stenosis. J Vasc Surg 1998; 28(2):290–300.

    Article  PubMed  CAS  Google Scholar 

  19. Ho VB, Corse WR, Hood MN, Rowedder AM. MRA of the thoracic vessels. Semin Ultrasound CT MR 2003; 24(4):192–216.

    Article  PubMed  Google Scholar 

  20. Ho VB, Prince MR. Thoracic MR aortography: Imaging techniques and strategies. Radiographics 1998; 18(2):287–309.

    PubMed  CAS  Google Scholar 

  21. Merkle EM, Klein S, Wisianowsky C et al., Magnetic resonance imaging versus multislice computed tomography of thoracic aortic endografts. J Endovasc Ther 2002; 9(Suppl 2):112–113.

    Google Scholar 

  22. Leung DA, Debatin JF. Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature. Eur Radiol 1997; 7(7):981–989.

    Article  PubMed  CAS  Google Scholar 

  23. Holmqvist C, Larsson E-M, Stahlberg F, Laurin S. Contrast-enhanced thoracic 3D-MR angiography in infants and children. Acta Radiol 2001; 42(1):50–58.

    Article  PubMed  CAS  Google Scholar 

  24. Willinek WA, Gieseke J, Conrad R et al., Randomly segmented central k-space ordering in high-spatial-resolution contrast-enhanced MR angiography of the supraaortic arteries: Initial experience. Radiology 2002; 225(2):583–588.

    Article  PubMed  Google Scholar 

  25. Wintersperger BJ, Huber A, Preissler G et al.,. MR angiography of the supraaortic vessels. Radiologe 2000; 40(9):785–791.

    Article  PubMed  CAS  Google Scholar 

  26. Riederer SJ, Bernstein MA, Breen JF et al.,. Three-dimensional contrast-enhanced MR angiog-raphy with real-time fluoroscopic triggering: Design specifications and technical reliability in 330 patient studies. Radiology 2000; 215(2):584–593.

    PubMed  CAS  Google Scholar 

  27. Remonda L, Senn P, Barth A, Arnold M, Lovblad KO, Schroth G. Contrast-enhanced 3D MR angi-ography of the carotid artery: Comparison with conventional digital subtraction angiography. Am J Neuroradiol 2002; 23(2):213–219.

    PubMed  Google Scholar 

  28. Willinek WA, von Falkenhausen M, Born M et al., Noninvasive detection of steno-occlusive disease of the supra-aortic arteries with three-dimensional contrast-enhanced magnetic resonance angiog-raphy: A prospective, intra-individual comparative analysis with digital subtraction angiography. Stroke 2005; 36 (1): 38–43.

    Article  PubMed  Google Scholar 

  29. Wardlaw JM, Lewis SC, Humphrey P, Young G, Collie D, Warlow CP. How does the degree of carotid stenosis affect the accuracy and interobserver variability of magnetic resonance angiography? J Neurol Neurosurg Psychiatry 2001; 71(2):155–160.

    Article  PubMed  CAS  Google Scholar 

  30. Lell M, Fellner C, Baum U et al., Evaluation of carotid artery stenosis with multisection CT and MR imaging: Influence of imaging modality and postprocessing. Am J Neuroradiol 2007; 28(1):104–110.

    PubMed  CAS  Google Scholar 

  31. Johnston DC, Eastwood JD, Nguyen T, Goldstein LB. Contrast-enhanced magnetic resonance angiography of carotid arteries: Utility in routine clinical practice. Stroke 2002; 33(12):2834–2838.

    Article  PubMed  Google Scholar 

  32. Klucznik RP. Current technology and clinical applications of three-dimensional angiography. Radiol Clin North Am 2002; 40(4):711–728, v.

    Article  PubMed  Google Scholar 

  33. Unno N, Mitsuoka H, Takei Y et al.,. Virtual angioscopy using 3-dimensional rotational digital subtraction angiography for endovascular assessment. J Endovasc Ther 2002; 9(4):529–534.

    Article  PubMed  Google Scholar 

  34. van den Berg JC, Overtoom TT, de Valois JC, Moll FL. Using three-dimensional rotational angiography for sizing of covered stents. Am J Roentgenol 2002; 178(1):149–152.

    Google Scholar 

  35. van den Berg JC, Moll FL. Three-dimensional rotational angiography in peripheral endovascular interventions. J Endovasc Ther 2003; 10(3):595–600.

    Article  PubMed  Google Scholar 

  36. van den Berg JC. Three-dimensional rotational angiography. In: Wyatt MG, Watkinson AF (eds). Endovascular Intervention — Current Controversies. Shrewsbury, UK: tfm Publishing, 2004, pp. 247–256.

    Google Scholar 

  37. Bridcut RR, Winder RJ, Workman A, Flynn P. Assessment of distortion in a three-dimensional rotational angiography system. Br J Radiol 2002; 75(891):266–270.

    PubMed  CAS  Google Scholar 

  38. Pozzi MF, Calgaro A, Bruni S, Bottaro L, Pozzi MR. Three-dimensional rotational angiography of the carotid arteries with high-flow injection from the aortic arch. Preliminary experience. Radiol Med (Torino) 2005; 109(1–2):108–117.

    Google Scholar 

  39. Racadio JM, Fricke BL, Jones BV, Donnelly LF. Three-dimensional rotational angiography of neurov-ascular lesions in pediatric patients. Am J Roentgenol 2006; 186(1):75–84.

    Article  Google Scholar 

  40. Hatakeyama Y,Kakeda S,Korogi Y et al., Intracranial 2D and 3D DSA with flat panel detector of the direct conversion type: Initial experience. Eur Radiol 2006; 16(11):2594–2602.

    Article  PubMed  Google Scholar 

  41. Nederkoorn PJ, van der Graaf Y, Hunink MG. Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: A systematic review.Stroke 2003; 34(5):1324–1332.

    Article  PubMed  Google Scholar 

  42. Koelemay MJ, Nederkoorn PJ, Reitsma JB, Majoie CB. Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke 2004; 35(10):2306–2312.

    Article  PubMed  Google Scholar 

  43. Binaghi S, Maeder P, Uske A, Meuwly JY, Devuyst G, Meuli RA. Three-dimensional computed tomography angiography and magnetic resonance angiography of carotid bifurcation stenosis. Eur Neurol 2001; 46(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  44. Hacklander T, Wegner H, Hoppe S et al.,. Agreement of multislice CT angiography and MR angiography in assessing the degree of carotid artery stenosis in consideration of different methods of postprocessing. J Comput Assist Tomogr 2006; 30(3):433–442.

    Article  PubMed  Google Scholar 

  45. Fellner C, Lang W, Janka R, Wutke R, Bautz W, Fellner FA. Magnetic resonance angiography of the carotid arteries using three different techniques: Accuracy compared with intraarterial x-ray angiog-raphy and endarterectomy specimens. J Magn Reson Imaging 2005; 21(4):424–431.

    Article  PubMed  Google Scholar 

  46. Townsend TC, Saloner D, Pan XM, Rapp JH. Contrast material-enhanced MRA overestimates severity of carotid stenosis, compared with 3D time-of-flight MRA. J Vasc Surg 2003; 38(1):36–40.

    Article  PubMed  Google Scholar 

  47. Nederkoorn PJ, Elgersma OE, Mali WP, Eikelboom BC, Kappelle LJ, van der Graaf Y. Overestimation of carotid artery stenosis with magnetic resonance angiography compared with digital subtraction angi-ography. J Vasc Surg 2002; 36(4):806–813.

    PubMed  Google Scholar 

  48. Muhs BE, Gagne P, Wagener J et al., Gadolinium-enhanced versus time-of-flight magnetic resonance angiography: What is the benefit of contrast enhancement in evaluating carotid stenosis? Ann Vasc Surg 2005; 19(6):823–828.

    Article  PubMed  Google Scholar 

  49. Clevert DA, Johnson T, Michaely H et al., High-grade stenoses of the internal carotid artery: Comparison of high-resolution contrast enhanced 3D MRA, duplex sonography and power Doppler imaging. Eur J Radiol 2006; 60(3):379–386.

    Article  PubMed  Google Scholar 

  50. Zhang WW, Harris LM, Dryjski ML. Should conventional angiography be the gold standard for carotid stenosis? J Endovasc Ther 2006; 13(6):723–728.

    Article  PubMed  Google Scholar 

  51. Anzalone N, Scomazzoni F, Castellano R et al.,. Carotid artery stenosis: Intraindividual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conventional DSA, and rotational angiography for detection and grading. Radiology 2005; 236(1):204–213.

    Article  PubMed  Google Scholar 

  52. Elgersma OE, Wust AF, Buijs PC, van der Graaf Y, Eikelboom BC, Mali WP. Multidirectional depiction of internal carotid arterial stenosis: Three-dimensional time-of-flight MR angiography versus rotational and conventional digital subtraction angiography. Radiology 2000; 216(2):511–516.

    PubMed  CAS  Google Scholar 

  53. Bendszus M, Koltzenburg M, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L. Silent embolism in diagnostic cerebral angiography and neurointer-ventional procedures: A prospective study. Lancet 1999; 354(9190):1594–1597.

    Article  PubMed  CAS  Google Scholar 

  54. Forsting M, Wanke I. Funeral for a friend. Stroke 2003; 34(5):1324–1332.

    Article  PubMed  Google Scholar 

  55. Jayakrishnan VK, White PM, Aitken D, Crane P, McMahon AD, Teasdale EM. Subtraction helical CT angiography of intra- and extracranial vessels: Technical considerations and preliminary experience. Am J Neuroradiol 2003; 24(3):451–455.

    PubMed  Google Scholar 

  56. Bucek RA, Puchner S, Kanitsar A, Rand T, Lammer J. Automated CTA quantification of internal carotid artery stenosis: A pilot trial. J Endovasc Ther 2007; 14(1):70–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

van den Berg, J.C. (2009). Preprocedure Imaging. In: Macdonald, S., Stansby, G. (eds) Practical Carotid Artery Stenting. Springer, London. https://doi.org/10.1007/978-1-84800-299-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-299-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-298-2

  • Online ISBN: 978-1-84800-299-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics