Skip to main content

Extending Measurement Science to Interactive Visualisation Environments

  • Chapter
  • First Online:
Trends in Interactive Visualization

Abstract

We describe three classes of tools to turn visualizations into a visual laboratory to interactively measure and analyze scientific data. We move the normal activities that scientists perform to understand their data into the visualization environment, which becomes our virtual laboratory, combining the qualitative with the quantitative. We use representation, interactive selection, quantification, and display to add quantitative measurement methods, input tools, and output tools. These allow us to obtain numerical information from each visualization. The exact form that the tools take within each of our three categories depends on features present in the data, hence each is manifested differently in different situations. We illustrate the three approaches with a variety of case studies from immersive to desktop environments that demonstrate the methods used to obtain quantitative knowledge interactively from visual objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adobe Software (2007) : http://www.adobe.com.

    Google Scholar 

  2. Becker, R. A. and Cleveland, W. S. (1987) Brushing scatterplots. Technometrics, 29:(2)127–142.

    Article  MathSciNet  Google Scholar 

  3. Bethel, E. W., Bastacky, S. J., and Schwartz, K. S. (2002) Interactive stereo electron microscopy enhanced with virtual reality. In: Woods, A. J. Merritt, J. O. Benton, S. A. Bolas, M. T. Spector, L. Parmee, and I. Beyer (Eds.), H. G. Stereoscopic Displays and Virtual Reality Systems IX. SPIE, San Jose, CA, pp. 391–400.

    Google Scholar 

  4. Brady, R., Pixton, J., Baxter, G., Moran, P., Potter, C. S., Carragher, B., and Belmont, A. (1995) Crumbs: A virtual environment tracking tool for biological imaging. In: Proceedings of IEEE Symposium on Frontiers in Biomedical Visualization.

    Google Scholar 

  5. Corrie, B. and Mackerras, P. (1993) Data shaders. In: Proceedings of the 4th Conference on Visualization. pp. 275?282.

    Google Scholar 

  6. Devaney, J., Satterfield, S., Hagedorn, J., Kelso, J., Peskin, A., George, W., Griffin, T., Hung, H., and Kriz, R. (2005) Science at the speed of thought. In: Ambient Intelligence for Scientific Discovery: Lecture Notes in Artificial Intelligence, vol. 3345, pp. 1–24.

    Google Scholar 

  7. Diepstraten, J., Weiskopf, D. and Ertl, T. (2002) Transparency in interactive technical illustrations. Computer Graphics Forum 21:(3)317–325.

    Article  Google Scholar 

  8. Elmqvist, N. and Tudoreanu, M. E. (2006) Evaluating the effectiveness of occlusion reduction techniques for 3D virtual environments. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Press, New York, pp. 9–18.

    Chapter  Google Scholar 

  9. Feiner, S. K. and Seligmann, D. D. (1992) Cutaways and ghosting: Satisfying visibility constraints in dynamic 3D illustrations. The Visual Computer, 8:(5–6)292–302.

    Article  Google Scholar 

  10. Flider, M. J. and Bailey, B. P. (2004) An evaluation of techniques for controlling focus + context ccreens. In: Proceedings of Graphics Interface 2004. pp. 135-144.

    Google Scholar 

  11. Hagedorn, J., Dunkers, J., Peskin, A., Kelso, J., Henderson, L., and Terrill, J. (2006) Quantitative, interactive measurement of tissue engineering scaffold structure in an immersive visualization environment. Biomaterials Forum, 28:(4)6–9.

    Google Scholar 

  12. Hagedorn, J., Dunkers, J., Satterfield, S., Peskin, A., Kelso, J., and Terrill, J. (2007) Measurement tools for the immersive visualization environment. Journal of Research of the National Institute of Standards and Technology, 112:(5)257–270.

    Google Scholar 

  13. Hanrahan, P. and Lawson, J. (1990) A language for shading and lighting calculations. In: SIGGRAPH ‘90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques.ACM Press, New York, pp. 289–298.

    Google Scholar 

  14. Hastreiter, P., Rezk-Salama, Ch., Tomandl, B., Eberhardt, K. E. W., and Ertl, T. (1998) Fast analysis of intracranial aneurysms based on interactive direct volume rendering and CTA. In: Wells, W. M. Colchester, and A. Delp (Eds.), S. Medical Image Computing and Computer-Assisted Interventation – MICCAI’98. Springer, Berlin, pp. 660–668.

    Chapter  Google Scholar 

  15. Jayaraman, S. and North, C. (2002) A radial focus + context visualization for multi-dimensional functions. In: Proceedings of the Conference on Visualization ‘02 IEEE, Washington, DC, pp. 443-450.

    Google Scholar 

  16. Kim, M., Milgram, P., and Drake, J. (1997) Virtual tape measure for 3D measurements in micro-surgery. In: Engineering in Medicine and Biology Society, Proceedings of the 19th Annual International Conference of the IEEE, pp. 967?969.

    Google Scholar 

  17. Leung, Y. K. and Apperley, M. D. (1994) A review and taxonomy of distortion-oriented presentation techniques. ACM Transactions on Computer-Human Interaction (TOCHI), 1:(2)126–160.

    Article  Google Scholar 

  18. Markosian, L., Kowalski, M. A., Goldstein, D., Trychin, S. J., Hughes, J. F. and Bourdev, L. D. (1997) In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, pp. 415–420.

    Book  Google Scholar 

  19. Martys, N., George, W. and Lootens, D. (2007) Spatial-temporal correlations in startup-up flows of colloidal suspensions. In preparation.

    Google Scholar 

  20. Mercury Computer Systems (2007) : http://www.tgs.com.

    Google Scholar 

  21. Perlin, K. (1985) An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques.ACM Press, New York, pp. 287–296.

    Google Scholar 

  22. Pfitzner, D., Hobbs, V. and Powers, D. (2003) A unified taxonomic framework for information visualization. In: Proceedings of the Asia-Pacific Symposium on Information Visualisation.Australian Computer Society, Adelaide, Australia, pp. 57–66.

    Google Scholar 

  23. Preim, B. and Bartz, D. (2007) Visualization in Medicine. Morgan Kaufmann, Burlington, MA.

    Google Scholar 

  24. Preim, B., Tietjen, C., Spindler, W., and Peitgen, H.-O. (2002) Integration of measurement tools in medical 3D visualizations. In: IEEE Visualization, pp. 21–28.

    Google Scholar 

  25. R Package for Statistical Computing (2007) : http://www.r-project.org.

    Google Scholar 

  26. Reitinger, B., Schmalstieg, D., Bornik, A., and Beichel, R. (2006) Spatial analysis tools for virtual reality-based surgical planning. In: Proceedings of the 2006 IEEE Symposium on 3D User Interfaces. pp. 37–44.

    Google Scholar 

  27. Rost, R. J. (2005) OpenGL(R) Shading Language, 2nd Edition. Addison-Wesley Professional, Boston, MA.

    Google Scholar 

Download references

Acknowledgment

The Flow of Suspensions computations were performed under Award SMD-05-A-0129, “Modeling the Rheological Properties of Suspensions: Application to Cement Based Materials,” for NASA’s National Leadership Computing System initiative on the “Columbia” supercomputer at the NASA Ames Research Center.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Terrill, J. et al. (2009). Extending Measurement Science to Interactive Visualisation Environments. In: Liere, R., Adriaansen, T., Zudilova-Seinstra, E. (eds) Trends in Interactive Visualization. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84800-269-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-269-2_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-268-5

  • Online ISBN: 978-1-84800-269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics