Skip to main content

Robustness in Nature as a Design Principle for Artificial Intelligence

  • Chapter
Robust Intelligent Systems

Abstract

Robustness is a feature in many systems, natural and artificial alike. This chapter investigates robustness from a variety of perspectives including its appearances in nature and its application in modern environments. A particular focus investigates the relevance and importance of robustness in a discipline where many techniques are inspired by problem-solving strategies found in nature—artificial intelligence. The challenging field of artificial intelligence provides an opportunity to engage in a wider discussion on the subject of robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, E., Khoshgoftaar, T., and Chen, Y. (2001). Measuring coupling and cohesion of software modules: an information theory approach. In Seventh International Software Metrics Symposium (METRICS’01), page 124. IEEE Computer Society Press.

    Google Scholar 

  • Bentley, P. (2005). Investigations into graceful degradation of evolutionary developmental software. Natural Computing, 4:417–437.

    Article  MATH  MathSciNet  Google Scholar 

  • Beyer, H. and Schwefel, H. (2002). Evolution strategies: a comprehensive introduction. Natural Computing, 1(1):3–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Beyer, H. and Schwefel, H. (2007). Robust optimization–a comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196(33–34):3190–3218.

    Article  MATH  MathSciNet  Google Scholar 

  • Brighton, H. and Selina, H. (2003). Introducing Artificial Intelligence. Icon Books, UK.

    Google Scholar 

  • Carbone, C., Teacher, A., and Rowcliffe, J. (2007). The costs of carnivory. PLoS Biology, 5(2):363–368.

    Article  Google Scholar 

  • Chen, S. and Hwang, C. (1992). Fuzzy Multiple Attribute Decision Making, Methods and Applications. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • de Castro, L. and Timmis, J. (2003). Artificial immune systems as a novel soft computing paradigm. Soft Computing, 7(8):526–544.

    Google Scholar 

  • Giulio Di, M. (2005). The origin of the genetic code: theories and their relationships, a review. BioSystems, 80(2):175–184.

    Article  Google Scholar 

  • Gough, N. (1993). Fractal analysis of foetal heart rate variability. Physiological Measurement, 14(3):309–315.

    Article  Google Scholar 

  • Hayes, B. (2004). Ode to the code. American Scientist, 92:494–498.

    Google Scholar 

  • Huhns, M. and Holderfield, V. (2002). Robust software. IEEE Internet Computing, 6(2):80–82.

    Article  Google Scholar 

  • Jones, G. and Jones, M. (2000). Information and Coding Theory. Springer-Verlag, London.

    MATH  Google Scholar 

  • Kaye, B. (1989). A Random Walk through Fractal Dimensions. VCH, New York.

    MATH  Google Scholar 

  • Kephart, J. and Chess, D. (2003). The vision of autonomic computing. IEEE Computer, 36(1):41–50.

    Google Scholar 

  • Lussier, B., Chatila, R., Ingrand, F., Killijian, M., and Powell, D. (2004). On fault tolerance and robustness in autonomous systems. In 3rd IARP-IEEE/RAS-EURON Joint Workshop on Technical Challenges for Dependable Robots in Human Environments, Lecture Notes in Computer Science, pages 7–9. Manchester, UK.

    Google Scholar 

  • Mehrotra, K., Monan, C., and Ranka, S. (1997). Elements of Artificial Neural Networks. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Miller, G. (1965). The magic number seven, plus or minus two. Psychological Review, 63:81–97.

    Article  Google Scholar 

  • Negnevitsky, M. (2005). Artificial Intelligence: A Guide to Intelligent Systems. Addison Wesley, Harlow, England, 2nd edition.

    Google Scholar 

  • Pfeifer, R. and Scheier, C. (2000). Understanding Intelligence. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Schuster, A. (2006). Advances in Applied Artificial Intelligence, volume 4031 of Lecture Notes in Computer Science, chapter A hybrid robot control system based on soft computing techniques, pages 187–196. Springer-Verlag, Heidelberg. Proceedings of 19th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2006, Annecy, France, June 27–30, 2006.

    Google Scholar 

  • Schuster, A. (2007a). Robust artificial intelligence. In Workshop on Artificial Intelligence for Space Applications at IJCAI’07, Hyderabad, India.

    Google Scholar 

  • Schuster, A. (2007b). Robust artificial neural network architectures. IJCI International Journal of Computational Intelligence, 4(2):98–104. World Academy of Science, Engineering and Technology.

    MathSciNet  Google Scholar 

  • Schuster, A., Blackburn, W., and Segui Prieto, M. (2002). A study on fractal dimensions and convergence in fuzzy control systems. Journal of Telecommunications and Information Technology, 3:30–36. National Institute of Telecommunications, Warsaw, Poland.

    Google Scholar 

  • Shema, R., Sacktor, T., and Dudai, Y. (2007). Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM. Science, (317):951–953.

    Article  Google Scholar 

  • Stewart, I. (1997). Does God Play Dice?: The New Mathematics of Chaos. Penguin Books, Harmondsworth, England, 2nd edition.

    Google Scholar 

  • Tan, G., Revilla, F., and Zauner, K. (2007). Protein folding and the robustness of cells. BioSystems, 87:289–298.

    Article  Google Scholar 

  • Teuscher, C. (2007). From membranes to systems: self-configuration and self-replication in membrane systems. BioSystems, 87:101–110.

    Article  Google Scholar 

  • Timmis, J. (2007). Artificial immune systems—today and tomorrow. Natural Computing, 6(1):1–18.

    Article  MATH  MathSciNet  Google Scholar 

  • Tsuda, S., Zauner, K., and Gunji, Y. (2007). Robot control with biological cells. BioSystems, 87(2–3):215–223.

    Article  Google Scholar 

  • Young, E. (2007). Vast ancient settlement unearthed in Cambodia. New Scientist, (2617):15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Schuster, A. (2008). Robustness in Nature as a Design Principle for Artificial Intelligence. In: Schuster, A. (eds) Robust Intelligent Systems. Springer, London. https://doi.org/10.1007/978-1-84800-261-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-261-6_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-260-9

  • Online ISBN: 978-1-84800-261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics