Skip to main content

Robust Bio-regenerative Life Support Systems Control

  • Chapter
Robust Intelligent Systems

Abstract

Recent developments in the international space community have shown that there is an increasing interest in the human exploration of outer space. In particular, the objective of sending a manned mission to Mars by 2030 has been settled. The feasibility of such a mission will require “life support systems” (LSSs) able to provide vital elements to the exploration crew in an autonomous, self-sustained manner, as resupply from Earth will not be possible. Bio-regenerative life support systems (BLSSs) are considered to be the LSS technology alternatives that can meet this demand. Developing effective BLSSs is a challenge for the control community because of the high degree of automation, indeterminism, non-linearity, and instability in such systems. This chapter proposes to provide “robustness” to the system for tasks such as distributed control, intelligent control, fault detection and identification, or high-level planning and supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angulo, C., Gonzáalez, G., Raya, C., and Català, A. (2007). An OSA-CBM multi-agent vehicle health management architecture for self-health awareness. International Journal of Intelligent Control and Systems, 12(12):158–166.

    Google Scholar 

  • Antsaklis, P. and Passino, K., editors (1993). An Introduction to Intelligent and Autonomous Control. Kluwer Academic Publishers, Norwell, MA.

    MATH  Google Scholar 

  • Bemporad, A., Ferrari-Trecate, G., and Morari, M. (2000). Observability and controllability of piecewise affine and hybrid systems. IEEE Transactions on Automatic Control, 45(10): 1864–1876.

    Article  MATH  MathSciNet  Google Scholar 

  • Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3):407–427.

    Article  MATH  MathSciNet  Google Scholar 

  • Biswas, G., Bonasso, P., Abdelwahed, S., Manders, E., Wu, J., Kortenkamp, V., and Bell, S. (2005). Requirements for an autonomous control architecture for advanced life support systems. In Proceedings of the 35th SAE International Conference on Environmental Systems (ICES’05), Rome, Italy, 14th July.

    Google Scholar 

  • Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2003). Diagnosis and Fault-Tolerant Control. Springer-Verlag Berlin Heidelberg.

    MATH  Google Scholar 

  • Burns, C. and Hajdukiewicz, J. (2004). Ecological Interface Design. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bussmann, S., Jennings, N. R., and Wooldridge, M. (2004). Multiagent systems for manufacturing control: a design methodology. Series on Agent Technology. Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Duatis, J., Angulo, C., and Mas, J. (2006). A new approach for advanced life-support systems control. ERCIM News, 65(65):18–19.

    Google Scholar 

  • Duatis, J., Elvira, J. Mas, J., and Doulami, F. (2003). Melissa adaptation for space. In Lobo, M. and Lasseur, C., editors, MELISA Yearly Report for 2002 Activity. Memorandum of Understanding. ESA.

    Google Scholar 

  • ESA (2003). European Space Agency (ESA): European framework for exploration. Paris, ESA/AURORA-BP(2003)25,rev.1.

    Google Scholar 

  • ESA (2004). European Space Agency (ESA): The Aurora programme.

    Google Scholar 

  • Fregene, K., Kennedy, D., and Wang, D. (2005). Toward a systems- and control-oriented agent framework. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(5):999–1012.

    Article  Google Scholar 

  • Glavaski, S., Subramanian, D., Ariyur, K., Ghosh, R., Lamba, N., and Papachristodoulou, A. (2007). A nonlinear hybrid life support system: dynamic modeling, control design, and safety verification. IEEE Transactions on Control Systems Technology, 15(6):1003–1017.

    Article  Google Scholar 

  • Gódia, F., Albiol, J., Montesinos, J., Pérez, J., Creus, N., Cabello, F., Mengual, X., Montras, A., and Lasseur, C. (2002). MELISSA: a loop of interconnected bioreactors to develop life support in space. Journal of Biotechnology, 99(3):319–330.

    Article  Google Scholar 

  • González, G., Angulo, C., and Raya, C. (2007). A multi-agent-based management approach for self-health awareness in autonomous systems. In Proceedings of the 4th IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe’07), pages 79–88, Tucson, Arizona, 26–29 March. IEEE Press.

    Google Scholar 

  • Hoffman, S. and Kaplan, D. (1997). The reference mission of the NASA mars exploration study team. Lyndon B. Johnson Space Center, Houston Texas.

    Google Scholar 

  • ISHEM (2005). First international forum on integrated system health engineering and management in aerospace. http://ic.arc.nasa.gov/projects/ishem/. Napa, CA.

    Google Scholar 

  • Lobo, M. and Lasseur, C. (2004). The melissa partners–yearly report for the 2003 activity. ESA/EWP-2244.

    Google Scholar 

  • Masot-Mata, A. (2007). Engineering Photosynthetic Systems for Bioregenerative Life Support. PhD thesis, Departament d’Enginyeria Química, Universitat Autónoma de Barcelona.

    Google Scholar 

  • NASA (1995). Man-systems integration standards. Lyndon B. Johnson Space Center, Houston Texas.

    Google Scholar 

  • NASA (2004). National Aeronautics and Space Administration (NASA): The vision for space exploration.

    Google Scholar 

  • Ocampo, C., Puig, V., Quevedo, J., Ingimundarson, A., Figueras, J., and Cembrano, G. (2006). Fault-tolerant optimal control of sewer networks: Barcelona case study. Measurement and Control, 5(39):151–156.

    Google Scholar 

  • Ocampo-Martíinez, C., Bemporad, A., Ingimundarson, A., and Puig, V. (2007). Hybrid model predictive control of sewer networks. In Sanchez-Peñna, R., Quevedo, J., and Puig, V., editors, Identification and Control: The Gap between Theory and Practice, pages 87–116. Springer-Verlag, London Ltd.

    Google Scholar 

  • Ocampo-Martínez, C., Guerra, P., Puig, V., and Quevedo, J. (2007a). Fault tolerance evaluation of linear constrained MPC using zonotope-based set computations. Journal of Systems and Control Engineering, 6(221):915–926.

    Google Scholar 

  • Ocampo-Martínez, C., Ingimundarson, A., Puig, V., and Quevedo, J. (2007b). Hybrid model predictive control applied on sewer networks: The Barcelona case study. In Lamnabhi-Lagarrigue, F., Laghrouche, S., Loria, A., and Panteley, E., editors, Taming Heterogeneity and Complexity of Embedded Control, pages 523–540. Selected papers presented at the Joint CTS-HYCON Workshop on Nonlinear and Hybrid Control, Paris IV Sorbonne, 10–12 July 2006.

    Google Scholar 

  • Puig, V., Stancu, A., Escobet, T., Nejjari, F., Quevedo, J., and Patton, J. (2006). Passive robust fault detection using interval observers: application to the damadics benchmark problem. Control Engineering Practice, 6(14):621–633.

    Article  Google Scholar 

  • Rotkowitz, M. and Lall, S. (2006). A characterization of convex problems in decentralized control. IEEE Transactions on Automatic Control, 51(2):274–286.

    MathSciNet  Google Scholar 

  • Schreckenghost, D., Thronesbery, C., Bonasso, P., Kortenkamp, D., and Martin, C. (2002). Intelligent control of life support for space missions. IEEE Intelligent Systems Magazine, 17(5): 24–31.

    Article  Google Scholar 

  • Sheridan, T. B. (1992). Telerobotics, Automation, and Supervisory Control. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Sierra, C., Rodríguez-Aguilar, J., Noriega, P., Esteva, M., and Arcos, J. (2004). Engineering multi-agent systems as electronic institutions. UPGRADE The European Journal for the Informatics Professional, V(4):33–39.

    Google Scholar 

  • Simani, S., Patton, R., and Fantuzzi, C. (2003). Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Springer-Verlag, New York.

    Google Scholar 

  • Supavatanakul, P., Lunze, J., Puig, V., and Quevedo, J. (2006). Diagnosis of timed automata: theory and application to the DAMADICS actuator benchmark problem. Control Engineering Practice, 6(14):609–619.

    Article  Google Scholar 

  • Woolridge, M. (2002). Introduction to Multiagent Systems. John Wiley & Sons, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Duatis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Duatis, J., Angulo, C., Puig, V., Ponsa, P. (2008). Robust Bio-regenerative Life Support Systems Control. In: Schuster, A. (eds) Robust Intelligent Systems. Springer, London. https://doi.org/10.1007/978-1-84800-261-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-261-6_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-260-9

  • Online ISBN: 978-1-84800-261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics