Skip to main content

Exploiting Motor Modules in Modular Contexts in Humanoid Robotics

  • Chapter
Robust Intelligent Systems

Abstract

There is a growing interest within various research communities in modeling motor control systems with modular structures. Recent studies identified that such control structures have many interesting properties. This chapter focuses, in a robot environment, on properties that are related to the fact that specific sets of contexts can themselves be modular. In particular, the chapter shows that the adaptation of a modular control structure can be guided by the modularity of contexts, by means of interpreting a current unexperienced context as the combination of previously experienced contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baud-Bovy, G., Rossi, S., and Prattichizzo, D. (2005). Effect of transcranial magnetic stimulaton on the grip and net force in the tripod grasp. In Proceedings of the 1st Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’05), pages 120–125, Pisa, Italy, 18–20 March. IEEE Computer Society, Washington, DC.

    Google Scholar 

  • Boothby, W. M. (2002). An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York, 2nd edition.

    Google Scholar 

  • Brashers-Krug, T., Shadmehr, R., and Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382:252–255.

    Article  Google Scholar 

  • Brown, C. and Asada, H. (2007). Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’07), pages 2877–2882, California, San Diego, CA, 29 October–2 November.

    Google Scholar 

  • Davidson, P. and Wolpert, D. (2004). Internal models underlying grasp can be additively combined. Experimental Brain Research, 155(3):334–340.

    Article  Google Scholar 

  • Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. (2000). Visuomotor neurons: ambiguity of the discharge or motor perception? International Journal of Psychophysiology, 35:165–177.

    Article  Google Scholar 

  • Flanagan, J. R. and Rao, A. K. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. Journal of Neurophysiology, 74(5):2174–2178.

    Google Scholar 

  • Ghahramani, Z. and Wolpert, D. (1997). Modular decomposition in visuomotor learning. Nature, 386(6623):392–395.

    Article  Google Scholar 

  • Kozlowski, K. (1998). Modelling and Identification in Robotics. Springer-Verlag, New York, 1st edition.

    Google Scholar 

  • Krakauer, J., Ghilardi, M., and Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2(11):1026–1031.

    Article  Google Scholar 

  • Murray, R. M., Li, Z., and Sastry, S. S. (1994). A Mathematical Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton, FL.

    MATH  Google Scholar 

  • Mussa-Ivaldi, F. and Giszter, S. (1992). Vector field approximation: a computational paradigm for motor control and learning. Biological Cybernetics, 37:491–500.

    Article  Google Scholar 

  • Mussa-Ivaldi, F. A. (1997). Nonlinear force fields: a distributed system of control promitives for representing and learning movements. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97), page 84, Los Alamitos, CA. IEEE Computer Society.

    Google Scholar 

  • Mussa-Ivaldi, F. A. and Bizzi, E. (2000). Motor learning through the combination of primitives. Philosophical Transactions of the Royal Society: Biological Sciences, 355:1755–1769.

    Article  Google Scholar 

  • Nori, F. (2005). Symbolic Control with Biologically Inspired Motion Primitives. PhD thesis, Università degli studi di Padova.

    Google Scholar 

  • Nori, F. and Frezza, R. (2004a). Biologically inspired control of a kinematic chain using the superposition of motion primitives. In Proceedings of 43rd IEEE Conference on Decision and Control (CDC’04), pages 1075–1080, Atlantis, Paradise Island, Bahamas.

    Google Scholar 

  • Nori, F. and Frezza, R. (2004b). Nonlinear control by a finite set of motion primitives. In Proceedings of the 6th IFAC Symposium on Nonlinear Control Systems Design (NOLCOS’04), pages 393–398, Stuttgart, Germany, 1–3 September.

    Google Scholar 

  • Nori, F. and Frezza, R. (2005). A control theory approach to the analysis and synthesis of the experimentally observed motion primitives. Biological Cybernetics, 93(5):323–342.

    Article  MATH  MathSciNet  Google Scholar 

  • Santello, M., Flanders, M., and J.Soechting (1998). Postural hand synergies for tool use. The Journal of Neuroscience, 18(23):10105–10115.

    Google Scholar 

  • Sastry, S. and Bodson, M. (1989). Adaptive control: Stability, Convergence, and Robustness. Prentice-Hall, Inc., Upper Saddle River, NJ.

    MATH  Google Scholar 

  • Shadmehr, R. and Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14:3208–3224.

    Google Scholar 

  • Shelhamer, M., Robinson, D., and Tan, H. (1991). Context-specific gain switching in the human vestibuloocular reflex. Annals of the New York Academy of Sciences, 656(5):889–891.

    Google Scholar 

  • Slotine, J. E. and Li, W. (1991). Applied NonLinear Control. Prentice-Hall International.

    Google Scholar 

  • Welch, R., Bridgeman, B., Anand, S., and Brownman, K. (1993). Alternating prism exposure causes dual adaptation and generalization to a novel displacement. Perception and Psychophysics, 54(2):195–204.

    Google Scholar 

  • Wolpert, D. and Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11:1317–1329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Nori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Nori, F., Metta, G., Sandini, G. (2008). Exploiting Motor Modules in Modular Contexts in Humanoid Robotics. In: Schuster, A. (eds) Robust Intelligent Systems. Springer, London. https://doi.org/10.1007/978-1-84800-261-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-261-6_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-260-9

  • Online ISBN: 978-1-84800-261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics