Skip to main content

The Basic Science of Robotic Surgery

  • Chapter
  • First Online:
Book cover Urologic Robotic Surgery in Clinical Practice

Abstract

This chapter aims to cover the basic science of robotic surgery focusing on all the devices currently in clinical use. We hope to give the potential and practicing robotic surgeon an understanding of the scientific basis behind the machines themselves and provide a concise framework of the practical nuances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer J, Lee BR, Stoianovici D et al. (2001) Remote percutaneous renal access using a new automated telesurgical robotic system. Telemed J E Health 7:341–346

    Article  PubMed  CAS  Google Scholar 

  • Benabid AL, Lavallee S, Hoffmann D et al. (1992) Computer driven robot for stereotactic neurosurgery. In: Kelly PJ, Kall BA (eds) Computers in Stereotactic Neurosurgery. Boston, Blackwell, pp 330–342

    Google Scholar 

  • Bove P, Stoianovici D, Micali S et al. (2003) Is telesurgery a new reality? Our experience with laparoscopic and percutaneous procedures. J Endourol 17:137–142

    Article  PubMed  Google Scholar 

  • Cadeddu JA, Bzostek A, Schreiner S, Barnes AC, Roberts WW, Anderson JH et al. (1997) A robotic system for percutaneous renal access. J Urol 158:1589–1593

    Article  PubMed  CAS  Google Scholar 

  • Cepolina F, Challacombe B, Michelini RC (2005) Trends in robotic surgery. J Endourol 19:940–951

    Article  PubMed  Google Scholar 

  • Challacombe B, Patriciu A, Glass J, Aron M, Jarrett T, Kim F et al. (2005) A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithotomy. Comput Aided Surg 10(3):165–171

    PubMed  Google Scholar 

  • Davies BL, Hibberd RD, Coptcoat MJ et al. (1989) A surgeon robot prostatectomy—a laboratory evaluation. J Med Eng Technol 13:273–277

    Article  PubMed  CAS  Google Scholar 

  • Davies BL, Hibberd RD, Ng WS et al. (1991) The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng 205:35–38

    CAS  Google Scholar 

  • Devol G (1961) US Patent 2,988,237. Programmed article transfer. Filed December 10, 1954 and issued June 13, 1961

    Google Scholar 

  • Ebbesen M, Jensen TG (2006) Nanomedicine: techniques, potentials, and ethical implications. J Biomed Biotechnol 5:51516

    Google Scholar 

  • Elhage O, Murphy D, Challacombe B, Shortland A, Dasgupta P (2007) Ergonomics in minimally invasive surgery. Int J Clin Pract 61:186–188

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio MD, Lee BR, Chan DY, Stoianovici D, Jarrett TW, Yang C, Kavoussi LR (2000) Effect of time delay on surgical performance during telesurgical manipulation. J Endourol 14: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Hernandez DJ, Sinkov VA, Roberts WW, Allaf ME, Patriciu A, Jarrett TW et al. (2001) Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access. J Urol 166(4):1520–1523

    Article  PubMed  CAS  Google Scholar 

  • Hochberger J, Lamade W (2005) Transgastric surgery in the abdomen: the dawn of a new era? Gastrointest Endosc 62(2): 293–296

    Article  PubMed  Google Scholar 

  • Janetschek G, Bartsch G, Kavoussi LR (1998) Transcontinental interactive laparoscopic telesurgery between the United States and Europe. J Urol 160:1413

    Article  PubMed  CAS  Google Scholar 

  • Jourdan IC, Dutson E, Garcia A et al. (2004) Stereoscopic vision provides a significant advantage for precision robotic laparoscopy. Br J Surg 91:879–885

    Article  PubMed  CAS  Google Scholar 

  • Kavoussi LR, Moore RG, Adams JB et al. (1995) Comparison of robotic versus laparoscopic camera control. J Urol 154: 2134–2136

    Article  PubMed  CAS  Google Scholar 

  • Lee BR, Bishoff JT, Janetschek G et al. (1998) A novel method of surgical instruction: international telementoring. World J Urol 16:367–370

    Article  PubMed  CAS  Google Scholar 

  • Lee BR, Png DJ, Liew L et al. (2000) Laparoscopic telesurgery between the United States and Singapore. Ann Acad Med Singapore 29:665–668

    PubMed  CAS  Google Scholar 

  • Marescaux J, Leroy J, Gagner M et al. (2001) Transatlantic robot-assisted telesurgery. Nature 413:379–380

    Article  PubMed  CAS  Google Scholar 

  • Moran ME (2007) Evolution of robotic arms. J Robotic Surg 1: 103–111

    Article  Google Scholar 

  • Paul HA, Bargar WL, Mittlestadt B et al. (1992) Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop 285:57–66

    PubMed  Google Scholar 

  • Rodrigues NN Jr, Mitre AI, Lima SV, Fugita OE, Lima ML, Stoianovici D et al. (2003) Telementoring between Brazil and the United States: Initial experience. J Endourol 17:217–220

    Article  Google Scholar 

  • Rosheim ME (2000) Leonardo’s programmable automaton. A reconstruction. http://www.anthrobot.com/press/article_leo_ programmable.html (last accessed 15.04.2008)

  • Solomon SB, Patriciu A, Bohlman ME, Kavoussi LR, Stoianovici D (2002) Robotically driven interventions: a method of using CT fluoroscopy without radiation exposure to the physician. Radiology 225:277–282

    Article  PubMed  Google Scholar 

  • Stoianovici D, Cleary K, Patriciu A et al. (2003) AcuBot: A robot for radiological interventions. IEEE Trans Robotics Automation 19:926–930.

    Google Scholar 

  • Stoianovici D, Patriciu A, Mazilu D, Petrisor D, Kavoussi L (2007a) A new type of motor: Pneumatic step motor. IEEE/ASME Transactions on Mechatronics 12:98–106

    Article  Google Scholar 

  • Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M et al. (2007b) “MRI stealth” robot for prostate interventions. Minim Invasiv Ther 16:241–248

    Article  Google Scholar 

  • Su LM, Stoianovici D, Jarrett TW et al. (2002) Robotic percutaneous access to the kidney: Comparison with standard manual access. J Endourol 16:471–475

    Article  PubMed  Google Scholar 

  • Talamini M, Campbell K, Stanfield C (2002) Robotic gastrointestinal surgery: early experience and system description. J Laparoendosc Adv Surg Tech A 12:225–232

    Article  PubMed  Google Scholar 

  • Taylor RH, Stoianovici D (2003) A survey of medical robotics in computer-integrated surgery. IEEE Trans Robotics Automation 19:765–781

    Article  Google Scholar 

  • Varkarakis IM, Rais-Bahrami S, Kavoussi LR, Stoianovici D (2005) Robotic surgery and telesurgery in urology. Urology 65(5): 840–846

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Challacombe, B., Stoianovici, D. (2008). The Basic Science of Robotic Surgery. In: Dasgupta, P. (eds) Urologic Robotic Surgery in Clinical Practice. Springer, London. https://doi.org/10.1007/978-1-84800-243-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-243-2_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-242-5

  • Online ISBN: 978-1-84800-243-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics