Skip to main content

Robotic Technology

  • Chapter
  • First Online:
Urologic Robotic Surgery in Clinical Practice

Abstract

Robotic surgery is an evolving and exciting field. We discuss the history of robotics in general and its introduction into medicine. Specific details of robotics in urology then follow with an introduction to the available systems. The chapter then concentrates on the da Vinci system which is currently the unchallenged master-slave platform. Comparisons between first and second generations of the da Vinci robot are made and improvements such as the 3DHD vision and Tile Pro are highlighted. Finally, there is a brief overview of telerobotics and telemedicine and a glimpse into the future of nanorobotics.

Any sufficiently advanced technology is indistinguishable from magic

Arthur C Clarke

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler JR Jr, Murphy MJ, Chang SD, Hancock SL (1999) Image-guided robotic radiosurgery. Neurosurgery 44:1299–1306

    PubMed  Google Scholar 

  • Bargar WL, Bauer A, Borner M (1998) Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res 82–91

    Google Scholar 

  • Bove P, Stoianovici D, Micali S, Patriciu A, Grassi N, Jarrett TW, Vespasiani G, Kavoussi LR (2003) Is telesurgery a new reality? Our experience with laparoscopic and percutaneous procedures. J Endourol 17:137–142

    Article  PubMed  Google Scholar 

  • Boyd J (2002) Tech Sight. Robotic laboratory automation. Science 295:517–518

    Article  PubMed  CAS  Google Scholar 

  • Capek K (1920) Rossum’s Universal Robots.

    Google Scholar 

  • Cavalcanti A, Freitas RA Jr (2005) Nanorobotics control design: a collective behavior approach for medicine. IEEE Trans Nanobioscience 4:133–140

    Article  PubMed  Google Scholar 

  • Challacombe BJ, Kavoussi LR, Dasgupta P (2003) Trans-oceanic telerobotic surgery. BJU Int 92:678–680

    Article  PubMed  CAS  Google Scholar 

  • Chang SD, Main W, Martin DP, Gibbs IC, Heilbrun MP (2003) An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 52:140–146

    PubMed  Google Scholar 

  • Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37:693–700

    PubMed  CAS  Google Scholar 

  • Cubano M, Poulose BK, Talamini MA, Stewart R, Antosek LE, Lentz R, Nibe R, Kutka MF, Mendoza-Sagaon M (1999) Long distance telementoring. A novel tool for laparoscopy aboard the USS Abraham Lincoln. Surg Endosc 13:673–678

    Article  PubMed  CAS  Google Scholar 

  • Dargahi J, Parameswaran M, Payandeh S (2000) A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication, and experiments. J Microelectromech Syst 9:329

    Article  CAS  Google Scholar 

  • Davies BL, Hibberd RD, Coptcoat MJ, Wickham JE (1989) A surgeon robot prostatectomy—a laboratory evaluation. J Med Eng Technol 13:273–277

    Article  PubMed  CAS  Google Scholar 

  • Donald H (1974) The Book of Knowledge of Ingenious Mechanical Devices. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Eljamel MS (2007) Validation of the PathFinder™ neurosurgical robot using a phantom. Int J Med Robot 3(4):372–377

    Article  PubMed  CAS  Google Scholar 

  • Ellison LM, Pinto PA, Kim F, Ong AM, Patriciu A, Stoianovici D, Rubin H, Jarrett T, Kavoussi LR (2004) Telerounding and patient satisfaction after surgery. J Am Coll Surg 199: 523–530

    Article  PubMed  Google Scholar 

  • Fabrizio MD, Lee BR, Chan DY, Stoianovici D, Jarrett TW, Yang C, Kavoussi LR (2000) Effect of time delay on surgical performance during telesurgical manipulation. J Endourol 14: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Felder RA, Boyd JC, Margrey K, Holman W, Savory J (1990) Robotics in the medical laboratory. Clin Chem 36:1534–1543

    PubMed  CAS  Google Scholar 

  • Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A (1995) Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg 1:266–272

    Article  PubMed  CAS  Google Scholar 

  • Harris SJ, Arambula-Cosio F, Mei Q, Nathan MS, Hibberd RD, Wickham JE (1997) The Probot-an active robot for prostate resection. Proc Inst Mech Eng 211:317–325

    CAS  Google Scholar 

  • Ho G, Ng WS, Teo MY, Kwoh CK, Cheng WS (2001) Experimental study of transurethral robotic laser resection of the prostate using the LaserTrode lightguide. J Biomed Opt 6:244–251

    Article  PubMed  CAS  Google Scholar 

  • Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M et al. (2001) Transatlantic robot-assisted telesurgery. Nature 413: 379–380

    Article  PubMed  CAS  Google Scholar 

  • Jakopec M, Harris SJ, Baena F, Gomes P, Cobb J, Davies BL (2001) The first clinical application of a “hands-on” robotic knee surgery system. Comput Aided Surg 6:329–339

    PubMed  CAS  Google Scholar 

  • Kasalicky MA, Svab J, Fried M, Melechovsky D (2002) AESOP 3000—computer-assisted surgery, personal experience. Rozhl Chir 81:346–349

    PubMed  CAS  Google Scholar 

  • Kavoussi LR, Moore RG, Adams JB, Partin AW (1995) Comparison of robotic versus human laparoscopic camera control. J Urol 154:2134–2136

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki ES, Player A (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 1:101–109

    Article  PubMed  CAS  Google Scholar 

  • Lee BR, Png DJ, Liew L, Fabrizio M, Li MK, Jarrett JW, Kavoussi LR (2000) Laparoscopic telesurgery between the United States and Singapore. Ann Acad Med Singapore 29:665–668

    PubMed  CAS  Google Scholar 

  • Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F (2002) The application accuracy of the NeuroMate robot—A quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg 7:90–98

    PubMed  Google Scholar 

  • Lob WS (1990) Robotic transportation. Clin Chem 36:1544–1550

    PubMed  CAS  Google Scholar 

  • Moore RG, Adams JB, Partin AW, Docimo SG, Kavoussi LR (1996) Telementoring of laparoscopic procedures: initial clinical experience. Surg Endosc 10:107–110

    PubMed  CAS  Google Scholar 

  • Muntener M, Patriciu A, Petrisor D, Mazilu D, Bagga H, Kavoussi L, Cleary K, Stoianovici D (2006) Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68:1313–1317

    Article  PubMed  Google Scholar 

  • Murphy D, Challacombe B, Khan MS, Dasgupta P (2006) Robotic technology in urology. Postgraduate Med J 82:743–747

    Article  CAS  Google Scholar 

  • Nocks L (2007) The robot: the life story of a technology. Greenwood Press, Westport

    Google Scholar 

  • Noonan D, Liu H, Zweiri Y (2007) A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery. In: Robotics and Automation, 2007 IEEE International Conference, April 10th–14th, 2007, Rome

    Google Scholar 

  • Pineau J, Montemerlo M, Pollack M, Ray N, Thrun S (2003) Towards robotic assistants in nursing homes: Challenges and results. Robot Autonom Syst 42:271–281

    Article  Google Scholar 

  • Prasad P (1995) Effective use of robots as mechanized couriers at Stanford University Hospital. Biomed Instrum Technol 29:398–404

    PubMed  CAS  Google Scholar 

  • Rao RS, Conn K, Jung SH, Katupitiya J, Kientz T, Kumar V, Ostrowski J, Patel S, Taylor CJ (2002) Human robot interaction: Applications to smart wheelchairs. In: Robotics and Automation. Proc ICRA ’02. IEEE International Conference, 11th–15th May, 2002

    Google Scholar 

  • Rodrigues NN Jr, Mitre AI, Lima SV, Fugita OE, Lima ML, Stoianovici D, Patriciu A, Kavoussi LR (2003) Telementoring between Brazil and the United States: initial experience. J Endourol 17:217–220

    Article  Google Scholar 

  • Rosheim ME (2006) Leonardo’s lost robots. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rosser JC Jr, Bell RL, Harnett B, Rodas E, Murayama M, Merrell R (1999) Use of mobile low-bandwidth telemedical techniques for extreme telemedicine applications. J Am Coll Surg 189: 397–404

    Article  PubMed  Google Scholar 

  • Rovetta A, Sala R (1995) Execution of robot-assisted biopsies within the clinical context. J Image Guid Surg 1:280–287

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Kageoka T, Ogura K, Kataoka H, Ueta T, Sugihara S (1998) Total laboratory automation in Japan. Past, present, and the future. Clin Chim Acta 278:217–227

    Article  PubMed  CAS  Google Scholar 

  • Satava RM (2002) Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percutan Tech 12:6–16

    Article  PubMed  Google Scholar 

  • Stoianovici D, Cleary K, Patriciu A, Mazilu D, Stanimir A, Craciunoiu N, Watson V, Kavoussi L (2003) AcuBot: a Robot for radiological interventions. In: IEEE Transactions on Robotics and Automation, pp. 927–930

    Google Scholar 

  • Sutherland G, McBeth P, Louw D (2003) NeuroArm: an MR compatible robot for microsurgery. Int Congress Series 1256:504

    Google Scholar 

  • Wellman P, Howe R (1997) Modelling probe and tissue interaction for tumour feature extraction. In: ASME Summer Bioengineering Conference, Sun River, Oregon

    Google Scholar 

  • Yanco H (1998) Wheelesley: A robotic Wheelchair System: Indoor Navigation and User Interface. In: Mittal VO (ed) Assistive Technology and Artificial Intelligence. Springer, Berlin Heidelberg New York, pp. 256–268

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Elhage, O., Hegarty, N. (2008). Robotic Technology. In: Dasgupta, P. (eds) Urologic Robotic Surgery in Clinical Practice. Springer, London. https://doi.org/10.1007/978-1-84800-243-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-243-2_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-242-5

  • Online ISBN: 978-1-84800-243-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics