Skip to main content

Design of Robust Strictly Positive Real Transfer Functions

  • Chapter
Networked Control Systems

Abstract

This chapter studies the robust synthesis problem for strictly positive real (SPR) transfer functions. The concepts of SPR regions and weak SPR regions are introduced. By using the complete discrimination system (CDS) for polynomials, complete characterization of the (weak) SPR regions for transfer functions in coefficient space is given. It is shown that the weak monic SPR region associated with a fixed polynomial is bounded and the intersection of several weak monic SPR regions associated with different polynomials cannot be a single point. Furthermore, we show how to construct a point in the SPR region from a point in the weak SPR region. Based on these theoretical development, we propose an algorithm for robust design of SPR transfer functions. This algorithm works well for both low-order and high-order polynomial families. Especially, the derived conditions are necessary and sufficient for robust SPR design of polynomial segment or low-order (n ≤ 4) interval polynomials. Illustrative examples are provided to show the effectiveness of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann J, Bartlett A, Kaesbauer D, Sienel W, Steinhauser R (1993) Robust control: systems with uncertain physical parameters. Springer-Verlag, Berlin

    MATH  Google Scholar 

  2. Anderson BDO (1967) A system theory criterion for positive real matrices. SIAM J Control 5:171–182

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson BDO (1968) A simplified viewpoint of hyperstability. IEEE Trans Automatic Control 13:292–294

    Article  Google Scholar 

  4. Anderson BDO, Bitmead RR, Johnson CR, Kokotovic PV, Kosut RL, Mareel IMY, Praly L, Riedle BD (1986) Stability of adaptive systems: passivity and averaging analysis. MIT Press, Cambridge

    Google Scholar 

  5. Anderson BDO, Dasgupta S, Khargonekar P, Kraus FJ, Mansou M (1990) Robust strict positive realness: characterization and construction. IEEE Trans Circuits Syst 37:869–876

    Article  MATH  Google Scholar 

  6. Anderson BDO, Jury E, Manours M (1987) On robust Hurwitz polynomials. IEEE Trans Automatic Control 32:909–913

    Article  Google Scholar 

  7. Anderson BDO, Moore JB (1970) Linear optimal control. Prentice Hall, New York

    Google Scholar 

  8. Anderson BDO, Vongpanitlerd S (1973) Network analysis and synthesis. Prentice Hall, New York

    Google Scholar 

  9. Barmish BR (1994) New tools for robustness of linear systems. MacMillan Publishing Company, New York

    MATH  Google Scholar 

  10. Barmish BR, Kang IH (1992) Extreme point results for robust stability of interval plants: beyond first order compensators. Automatica 28:1169–1180

    Article  MATH  MathSciNet  Google Scholar 

  11. Bartlett AC, Hollot CV, Huang L (1988) Root locations for an entire polytope of polynomial: it suffices to check the edges. Math Control Signals Syst 1:61–71

    Article  MATH  Google Scholar 

  12. Betser A, Zeheb E (1993) Design of robust strictly positive real transfer functions. IEEE Trans Circuits Syst Part I 40:573–580

    Article  MATH  MathSciNet  Google Scholar 

  13. Bhattacharyya SP, Chapellat H, Keel LH (1995) Robust control: the parametric approach. Prentice Hall, New York

    MATH  Google Scholar 

  14. Bianchini G (2002) Synthesis of robust strictly positive real discrete-time systems with l 2 parametric perturbations. IEEE Trans Circuits Syst Part I 49:1221–1225

    Article  MathSciNet  Google Scholar 

  15. Bianchini G, Tesi A, Vicino A (2001) Synthesis of robust strictly positive real systems with l 2 parametric uncertainty. IEEE Trans Circuits Syst Part I 48:438–450

    Article  MATH  MathSciNet  Google Scholar 

  16. Body S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  17. Chapellat H, Dahleh M, Bhattacharyya SP (1991) On robust nonlinear stability of interval control systems. IEEE Trans Automatic Control 36:59–69

    Article  MATH  MathSciNet  Google Scholar 

  18. Dasgupta S, Bhagwat AS (1987) Conditions for designing strictly positive real transfer functions for adaptive output error identification. IEEE Trans Circuits Syst 34:731–737

    Article  MathSciNet  Google Scholar 

  19. Dasgupta S, Chockalingam G, Anderson BDO, Fu M (1994) Lyapunov functions for uncertain systems with applications to the stability of time varying systems. IEEE Trans Circuits Syst Part I 41:93–106

    Article  MATH  MathSciNet  Google Scholar 

  20. Dasgupta S, Parker PJ, Anderson BDO, Kraus F J, Mansour M (1991) Frequency domain conditions for the robust stability of linear and nonlinear dynamical systems. IEEE Trans Circuits Syst 38:389–397

    Article  MATH  Google Scholar 

  21. Desoer C A, Vidyasagar M (1975) Feedback systems: input-output properties. Academic Press, San Diego

    MATH  Google Scholar 

  22. Gantmacher F (1959) Matrix theory. Chelsea, New York

    Google Scholar 

  23. Henrion D (2002) Linear matrix inequalities for robust strictly positive real design. IEEE Trans Circuits Syst Part I 49:1017–1020

    Article  MathSciNet  Google Scholar 

  24. Hitz L, Anderson BDO (1969) Discrete positive-real functions and their application to system stability. Proc IEE 116:153–155

    MathSciNet  Google Scholar 

  25. Hollot CV, Bartlett AC (1986) Some discrete time counterparts to Kharitonov’s stability criterion for uncertain systems. IEEE Trans Automatic Control 31:355–356

    Article  MATH  Google Scholar 

  26. Hollot CV, Huang L, Xu ZL (1989) Designing strictly positive real transfer function families: a necessary and sufficient condition for low degree and structured families. In: Proc Mathematical Theory of Network and Systems, Amsterdam, The Netherland, 215–227

    Google Scholar 

  27. Huang L, Hollot C V, Xu ZL (1990) Robust analysis of strictly positive real function set. In: Proc Second Japan-China Joint Symposium on Systems Control Theory and its Applications, Osaka, Japan, 210–220

    Google Scholar 

  28. Ioannou P, Tao G (1987) Frequency domain conditions for strictly positive real functions. IEEE Trans Automatic Control 32:53–54

    Article  MATH  Google Scholar 

  29. Kalman RE (1963) Lyapunov functions for the problem of Lur’e in automatic control. Proc Nat Acad Sci 49:201–205

    Article  MATH  MathSciNet  Google Scholar 

  30. Kharitonov VL (1978) Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differentsial’nye Uravneniya 14:2086–2088

    MATH  MathSciNet  Google Scholar 

  31. Landau ID (1979) Adaptive control: the model reference approach. Marcel Dekker, New York

    MATH  Google Scholar 

  32. Marquez HJ, Agathoklis P (1998) On the existence of robust strictly positive real rational functions. IEEE Trans Circuits Syst Part I 45:962–967

    Article  MATH  MathSciNet  Google Scholar 

  33. Mosquera C, Perez F (2001) Algebraic solution to the robust SPR problem for two polynomials. Automatica 37:757–762

    MATH  MathSciNet  Google Scholar 

  34. Nesterov Y, Nemirovski A (1994) Interior point polynomial methods in convex programming. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  35. Patel VV, Datta KB (1997) Classification of units in H and an alternative proof of Kharitonov’s theorem. IEEE Trans Circuits Syst Part I 44:454–458

    Article  MATH  Google Scholar 

  36. Popov VM (1973) Hyperstability of control systems. Springer-Verlag, New York

    MATH  Google Scholar 

  37. Rantzer A (1992) Stability conditions for polytopes of polynomials. IEEE Trans Automatic Control 37:79–89

    Article  MATH  MathSciNet  Google Scholar 

  38. Taylor JH (1974) Strictly positive-real functions and the Lefschetz-Kalman-Yakubovich (LKY) lemma. IEEE Trans Circuits Syst 21:310–311

    Article  Google Scholar 

  39. Wang L, Huang L (1991) Finite verification of strict positive realness of interval rational functions. Chinese Science Bulletin 36:262–264

    Google Scholar 

  40. Wang L, Huang L (1992) Robustness analysis of discrete systems — a geometric approach. Chinese Science Bulletin 37:1747–1752

    MATH  Google Scholar 

  41. Wang L, Huang L (1993) Finite verification of the characteristic specification of discrete systems. Chinese Science Bulletin 38:521–525

    MATH  Google Scholar 

  42. Wang L, Yu WS (1999) A new approach to robust synthesis of strictly positive real transfer functions. Stability and Control: Theory and Applications 2:13–24

    MathSciNet  Google Scholar 

  43. Wang L, Yu WS (2000) Complete characterization of strictly positive real regions and robust strictly positive real synthesis method. Science in China (E) 43:97–112

    MATH  MathSciNet  Google Scholar 

  44. Wang L, Yu WS (2001) On robust stability of polynomials and robust strict positive realness of transfer functions. IEEE Trans Circuits and Syst Part I 48:127–128

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang L, Yu WS (2001) Robust SPR synthesis for low-order polynomial segments and interval polynomials. In: Proc American Control Conference, Arlington, VA, 3612–3617

    Google Scholar 

  46. Wen JT (1988) Time domain and frequency domain conditions for strict positive realness. IEEE Trans Automatic Control 33:988–992

    Article  MATH  Google Scholar 

  47. Xie LJ, Wang L, Yu WS (2002) A new geometric algorithm with order reduction for robust strictly positive real synthesis. In: Proc 44th IEEE Conference on Decision and Control, Las Vegas, NV, 1844–1849

    Google Scholar 

  48. Xie LJ, Wang L, Yu WS, Qiu YH (2002) Robust strictly positive real (SPR) synthesis based on genetic algorithm. In: Proc 15th IFAC World Congress, Barcelona, Spain

    Google Scholar 

  49. Yakubovich VA (1962) The solution of certain matrix inequalities in automatic control theory. Doklady Ajkademii Nauk USSR 143:1304–1307

    Google Scholar 

  50. Yang L, Hou XR, Zeng ZB (1996) Complete discrimination system for polynomials. Science in China (E) 26:424–441

    Google Scholar 

  51. Yang L, Xia BC (1997) Explicit criterion to determine the number of positive roots of a polynomial. MM-Preprints 15:134–145

    Google Scholar 

  52. Yang L, Zhang JZ, Hou XR (1996) Nonlinear algebraic equations and machine proving. Shanghai Science and Education Press, Shanghai

    Google Scholar 

  53. Yu WS (1998) Robust strictly positive real synthesis and robust stability analysis. PhD Thesis, Peking University, Beijing, P. R. China

    Google Scholar 

  54. Yu WS, Huang L (1999) A necessary and sufficient conditions on robust SPR stabilization for low degree systems. Chinese Science Bulletin 44:517–520

    Article  MATH  MathSciNet  Google Scholar 

  55. Yu WS, Wang L (1999) Some remarks on the definition of strict positive realness of transfer Functions. In: Proc Chinese Conference on Decision and Control, Shenyang, P. R. China, 135–139

    Google Scholar 

  56. Yu WS, Wang L (2000) Design of strictly positive real transfer functions. In: Proc IFAC Symposium on Computer Aided Control Systems Design, Salford, UK

    Google Scholar 

  57. Yu WS, Wang L (2001) Anderson’s claim on fourth-order SPR synthesis is true. IEEE Trans Circuits Syst Part I 48:506–509

    Article  MATH  MathSciNet  Google Scholar 

  58. Yu WS, Wang L (2001) Robust SPR synthesis for fourth-order convex combinations. Progress in Natural Science 11:461–467

    MathSciNet  Google Scholar 

  59. Yu WS, Wang L (2001) Robust strictly positive real synthesis for convex combination of the fifth-order polynomials. In: Proc IEEE Symposium on Circuits and Systems Conference, Sydney, Australia, 739–742

    Google Scholar 

  60. Yu WS, Wang L (2003) Robust strictly positive real synthesis for convex combination of the sixth-order polynomials. In: Proc American Control Conference, Denver, CO, 3840–3845

    Google Scholar 

  61. Yu WS, Wang L, Ackermann J (2003) Solution to the general robust strictly positive real synthesis problem for polynomial segments. In: Proc 2003 European Control Conference, Cambridge, UK

    Google Scholar 

  62. Yu WS, Wang L, Ackermann J (2004) Robust strictly positive real synthesis problem for polynomial families of arbitrary order. Science in China (F) 47:475–489

    Article  MATH  MathSciNet  Google Scholar 

  63. Yu WS, Wang L, Tan M (1999) Complete characterization of strictly positive realness regions in coefficient space. In: Proc IEEE Hong Kong Symposium on Robotics and Control, Hong Kong, P. R. China, 259–264

    Google Scholar 

  64. Yu WS, Wang L, Xiang Y (2003) Robust strictly positive real synthesis of polynomial segments for discrete time systems. In: Proc 42nd IEEE Conference on Decision and Control, Maui, HI, 622–627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Yu, W., Wang, L. (2008). Design of Robust Strictly Positive Real Transfer Functions. In: Wang, FY., Liu, D. (eds) Networked Control Systems. Springer, London. https://doi.org/10.1007/978-1-84800-215-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-215-9_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-214-2

  • Online ISBN: 978-1-84800-215-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics