Skip to main content

Metal Cutting Mechanics, Finite Element Modelling

  • Chapter

Abstract

This chapter presents a short analysis of the basics of traditional metal cutting mechanics, outlining its components and the basics of finite element modelling (FEM) of the metal cutting process. Based on a previously proposed definition of metal cutting, advanced metal cutting mechanics considers the power spent in metal cutting as the summation of four components: the power spent on the plastic deformation of the layer being removed, the power spent on the tool–chip interface, the power spent on the tool–workpiece interface, and the power spent in the formation of new surfaces (cohesive energy). Energy partition in the cutting system and the relative impact of the parameters of the machining regime are discussed. Analyzing the basics of FEM and presenting examples, this chapter considers the errors in such modelling and their major sources. It points out the importance of the selection, verification and validation of the physically justifiable model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armarego EJA (1995) Predictive modelling of machining operations – a means of bridging the gap between the theory and practice – A keynote paper at the 13th Symposium on Engineering Applications of Mechanics. Hamilton, ON, Canada: CMSE

    Google Scholar 

  2. Endres WJ, Devor RE, Kapoor SG (1995) A dual-mechanism approach to the prediction of machining forces, Part 1: model development. ASME J Eng Ind 117: 526–533

    Google Scholar 

  3. Zorev NN (1966) Metal Cutting Mechanics. Pergamon: Oxford

    Google Scholar 

  4. Komanduri R (1993) Machining and grinding: A historical review of the classical papers. Appl Mech Rev 46: 80–132

    Article  Google Scholar 

  5. Merchant E (2003) An Interpretive Review of 20th Century US Machining and Grinding Research. TechSolve Inc, Cincinnati (OH) USA

    Google Scholar 

  6. Ernst H, Merchant ME (1941) Chip formation, friction and high quality machined surfaces. Surface Treatment Metals ASM 29: 299–378

    Google Scholar 

  7. Astakhov VP (2006) Tribology of Metal Cutting. Elsevier, London

    Google Scholar 

  8. Outeiro JC (2003) Application of Recent Metal Cutting Approaches to the Study of the Machining Residual Stresses. PhD Thesis, Department of Mechanical Engineering. 2003, University of Coimbra: Coimbra. p. 340

    Google Scholar 

  9. Astakhov VP, Shvets S (2004) The assessment of plastic deformation in metal cutting. J Mater Process Technol 146: 193–202

    Article  Google Scholar 

  10. Astakhov VP (1998) Metal Cutting Mechanics. CRC, Boca Raton, USA

    Google Scholar 

  11. Ivester RW (2004) Comparison of machining simulations for 1045 steel to experimental measurements. SME Paper TPO4PUB336: 1–15

    Google Scholar 

  12. Astakhov VP, Shvets SV (2001) A novel approach to operating force evaluation in high strain rate metal-deforming technological processes. J Mater Process Technol 117: 226–237

    Article  Google Scholar 

  13. Shet C, Chandra N (2002) Analysis of energy balance when using cohesive zone models to simulate fracture process. ASME J Eng Mater Technol 124: 440–450

    Article  Google Scholar 

  14. Shaw MC (1984) Metal Cutting Principles. Oxford Science, Oxford

    Google Scholar 

  15. Stephenson DA, Agapiou JS (1996) Metal Cutting Theory and Practice. Marcel Dekker, New York

    Google Scholar 

  16. Astakhov VP (2004) The assessment of cutting tool wear. Int J Machine Tools Manuf 44: 637–647

    Article  Google Scholar 

  17. Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 43: 373–396

    Article  Google Scholar 

  18. Atkins AG, Mai YW (1985) Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials. Wiley, New York

    Google Scholar 

  19. Barrenblatt GI (1962). Mechanical theory of equilibrium cracks. Advances in Applied Mechanics. Academic, New York, pp. 55–125

    Google Scholar 

  20. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–104

    Article  Google Scholar 

  21. Shet C, Chandra N (2002) Analysis of energy balance when using cohesive zone models to simulate fracture process. ASME J Eng Mater Technol 124(4): 440–450

    Article  Google Scholar 

  22. Rosa PAR, Martins PAF, Atkins AG (2007) Revising the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. Int J Mach Tools Manuf 47: 607–617

    Article  Google Scholar 

  23. Ceretti E, Lazzaroni C, Menegardo L, Altan T (2000) Turning simulations using a three-dimensional FEM code. J Mater Process Technol 98(1): 99–103

    Article  Google Scholar 

  24. Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Methods Eng 38: 3675–369

    Article  MATH  Google Scholar 

  25. Guo YB, Liu CR (2002) 3D FEA modelling of hard turning. J Manuf Sci Eng 124(2): 189–199

    Article  MathSciNet  Google Scholar 

  26. Mackerle J (1999) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86(1–3): 17–44

    Google Scholar 

  27. Movahhedy M, Gadala MS, Altintas Y (2000) Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian–Eulerian finite-element method. J Mater Process Technol 103: 267–275

    Article  Google Scholar 

  28. Carroll JT, Strenkowski JS (1988) Finite element models of orthogonal cutting with application to single point diamond turning. Int J Mech Sci 30: 899–920

    Article  Google Scholar 

  29. Strenkowski JS, Moon KJ (1990) Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. J Eng Ind 112(4): 313–318

    Article  Google Scholar 

  30. Kim KW, Sin HC (1996) Development of a thermo-viscoplastic cutting model using finite element method. Int J Mach Tools Manuf 36(3): 379–397

    Article  Google Scholar 

  31. Wu JS, Dillon JR (1996) Thermo-viscoplastic modelling of machining process using a mixed finite element method. J Manuf Sci Eng 118: 470–482

    Article  Google Scholar 

  32. Komvopoulos K, Erpenbeck SA (1991) Finite element modelling of orthogonal metal cutting. J Eng Ind 113(3): 253–267

    Google Scholar 

  33. Zhang B, Bagchi A (1994) Finite element simulation of chip formation and comparison with machining experiment. J Eng Ind 116(3): 289–297

    Article  Google Scholar 

  34. Shih AJ (1995) Finite element simulation of orthogonal metal cutting. J Eng Ind 117(1): 84–93

    Article  Google Scholar 

  35. Hashemi J, Tseng AA, Chou PC (1994) Finite element modelling of segmental chip formation in high-speed orthogonal cutting. J Mater Eng Performance 3(5): 712–721

    Article  Google Scholar 

  36. Iwata K, Osakada K, Terasaka T (1984) Process modelling of orthogonal cutting by the rigid-plastic finite element method. J Eng Mater Technol 106: 132–138

    Article  Google Scholar 

  37. Lin ZC, Lin SY (1992) A coupled finite element model of thermo-elastic-plastic large deformation for orthogonal cutting. J Eng Mater Technol 114: 218–226

    Article  Google Scholar 

  38. Chen AG, Black TJ (1994) FEM modelling in metal cutting. Manuf Rev 7: 120–133

    Google Scholar 

  39. Ceretti E, Fallböhmer P, Altan T (1996) Application of 2D FEM to chip formation in orthogonal cutting. J Mater Process Technol 59(1–2): 160–180

    Google Scholar 

  40. Obikawa T, Usui E (1996) Computational machining of titanium alloy – finite element modelling and a few results. J Manuf Sci Eng 118: 208–215

    Article  Google Scholar 

  41. Mackerle J (2001) 2D and 3D finite element meshing and remeshing: A bibliography (1990–2001). Engineering Computations. Int J Comput-Aided Eng 18(8): 1108–1197

    Article  MATH  Google Scholar 

  42. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strain, high strain rates and high temperature. In: Proceedings of seventh international symposium on ballistic, The Hague, The Netherlands

    Google Scholar 

  43. Kronenberg M (1966) Machining Science and Application. Theory and Practice for Operation and Development of Machining Processes. Pergamon, London

    Google Scholar 

  44. Armarego EJ, Brown RH (1969) The Machining of Metals. Prentice-Hall, New Jersey, USA

    Google Scholar 

  45. Finnie I, Shaw MC (1956) The friction process in metal cutting. Trans ASME 77: 1649–1657

    Google Scholar 

  46. Usui E, Takeyma H (1960) A photoelastic analysis of machining stresses. ASME J Eng Ind 81: 303–308

    Google Scholar 

  47. Lin ZC, Pan WC, Lo SP (1995) A study of orthogonal cutting with tool flank wear and sticking behaviour on the chip-tool interface. J Mater Process Technol 52: 524–538

    Article  Google Scholar 

  48. Olovsson L, Nilsson L, Simonsson K (1998) An ALE formulation for the solution of two-dimensional metal cutting problems. Comput Struct 72: 497–507

    Article  Google Scholar 

  49. Hahn RS (1952) On the temperature development at the shear plane in the metal cutting process. In Proceedings of the First US Nat. Appl. Mech. 1952: ASME, New York, 112–118

    Google Scholar 

  50. Sun, J.S., Lee KH, Lee HP (2000) Comparison of implicit and explicit finite element methods for dynamic problems. J Mater Process Technol 105: 110–118

    Article  Google Scholar 

  51. Hibbitt, Karlsson, and Sorenson, Inc. (2001) ABAQUS Theory and Users’ Manuals, Version 6.2-1, Providence, RI

    Google Scholar 

  52. Belytshko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: An overview and resent developments. Comput Methods Appl Mech Eng 139: 3–47

    Article  Google Scholar 

  53. Chen Y, James Lee J, Eskandarian A (2006) Meshless Methods in Solid Mechanics. Springer Science, NY

    MATH  Google Scholar 

  54. Liu GR (2002) Mesh Free Methods Moving beyond finite element method. CRC, Boca Raton, USA

    Google Scholar 

  55. Outeiro JC, Dias AM, Lebrun JL (2004) Experimental assessment of temperature distribution in three-dimensional cutting process. Mach Sci Technol 8/3: 357–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Astakhov, V., Outeiro, J. (2008). Metal Cutting Mechanics, Finite Element Modelling. In: Machining. Springer, London. https://doi.org/10.1007/978-1-84800-213-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-213-5_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-212-8

  • Online ISBN: 978-1-84800-213-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics