Skip to main content

Abstract

We have seen that the mathematical model appropriate for the representation of spectral color space is a finite-dimensional vector space. A representation space is associated with every physical color system, be it a receptor or an emitter. A receptor samples the spectral distribution function of the incident light, while an emitter performs color reconstruction by combining the elements of its basis of primary colors, which generate the emitter’s color space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. 1990. Fundamentals of Interactive Computer Graphics, second ed. Addison-Wesley, Reading, MA.

    Google Scholar 

  2. Hall, R. A. 1989. Illumination and Color in Computer Generated Imagery. Springer-Verlag, New York.

    Google Scholar 

  3. Hall, R. A. and Greenberg, D. P. 1983. A testbed for realistic image synthesis. IEEE Computer Graphics and Applications, 3:10–20.

    Article  Google Scholar 

  4. Joblove, G. H. and Greenberg, D. 1978. Color spaces for computer graphics. Computer Graphics (SIGGRAPH ’78 Proceedings), 12(3):20–25.

    Article  Google Scholar 

  5. Meyer, G. W. 1988. Wavelength selection for synthetic image generation. Computer Vision, Graphics and Image Processing, 41:57–79.

    Article  Google Scholar 

  6. Michener, J. C. and Van Dam, A. 1978. A functional overview of the Core System with glossary. ACM Computing Surveys, 10:381–387.

    Article  Google Scholar 

  7. Padgham, C. A. and Saunders, J. E. 1975. The Perception of Light and Color. Academic Press, New York.

    Google Scholar 

  8. Rogers, D. F. 1985. Procedural Elements for Computer Graphics. McGraw-Hill, New York.

    Google Scholar 

  9. Smith, A. R. 1978. Color gamut transform pairs. Computer Graphics (SIGGRAPH ’78 Proceedings), 12(3):12–19.

    Article  Google Scholar 

  10. Smith, A. R. 1981. Color tutorial notes. Technical Report No. 37, Lucasfilm.

    Google Scholar 

  11. Wyszecki, G. and Stiles, W. S. (1982). Color Science. John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Velho, L., Frery, A., Gomes, J. (2009). Color Systems. In: Image Processing for Computer Graphics and Vision. Texts in Computer Science. Springer, London. https://doi.org/10.1007/978-1-84800-193-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-193-0_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-192-3

  • Online ISBN: 978-1-84800-193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics