Skip to main content

Finite Element Modeling of Orthogonal Machining Process

  • Chapter
Modeling of Metal Forming and Machining Processes

Part of the book series: Engineering Materials and Processes ((EMP))

  • 3113 Accesses

Abstract

Machining processes are difficult to model for various reasons. Unlike metal forming processes, where almost the whole work-piece gets plastically deformed, in machining processes, the plastic deformation is localized near the cutting edge. Therefore, we need to analyze only a small region of the work-piece around the cutting edge (called the cutting zone). As a result, the selection of the domain dimensions and the appropriate boundary conditions becomes a difficult task. Further, even at a moderate cutting speed, the strain rates are quite high, almost of the order of 104 per second. Further, the temperature rise is also quite large. As a result, the viscoplasticity and temperature-sofening effects become more important compared to strain-hardening. Therefore, the material properties associated with these two effects should be known for a range of strain rates and temperatures occurring in typical machining processes. These properties are not readily available. Additionally, to incorporate the temperature rise in the analysis, one needs to solve the heat transfer equation governing the temperature field in conjunction with the usual three equations governing the deformation field. For plastic deformation, these equations are coupled, and hence difficult to solve. We can decouple this problem as follows. We first estimate the average temperature in the cutting zone either experimentally or by simple analytical methods. Then we solve the governing equations of the deformation field by evaluating the material properties at the estimated average temperature of the cutting zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.6 References

  1. Tay, A.O., Stevenson, M.G. and de Vahl Davis, G. (1974), Using the finite element method to determine temperature distributions in orthogonal machining, Proceedings of the Institution of Mechanical Enginners, Vol. 188, pp. 627–638.

    Article  Google Scholar 

  2. Tay, A.O., Stevenson, M.G., de Vahl Davis, G. and Oxley, P.L.B. (1976), A numerical method for calculating temperature distributions in machining, from force and shear angle measurements, International Journal of Machine Tool Design and Reearch., Vol. 16, pp. 335–349.

    Article  Google Scholar 

  3. Murarka, P.D., Barrow, G. and Hinduja, S. (1979), Influence of the process variables on the temperature distribution in orthogonal machining using the finite element method, International Journal of Mechanical Sciences, Vol. 21, pp. 445–456.

    Article  Google Scholar 

  4. Iwata, K., Osakada, K. and Terasaka, Y. (1984), Process modeling of orthogonal cutting by the rigid-plastic finite element method, Transactions of ASME, Journal of Engineering Materials and Technology, Vol. 106, pp. 132–138.

    Article  Google Scholar 

  5. Joshi, V.S., Dixit, P.M. and Jain, V.K. (1994), Viscoplastic analysis of metal cutting by finite element method, International Journal of Machine Tools and Manufacture, Vol. 34, pp. 553–571.

    Article  Google Scholar 

  6. Kim, K.W. and Sin, H.C. (1996), Development of a thermo-viscoplastic cutting model using finite element method, International Journal of Machine Tools and Manufacture, Vol. 36, pp. 379–397.

    Article  Google Scholar 

  7. Strenkowski, J.S. and Carrol, J.T. (1985), A finite element model of orthogonal metal cutting, Transactions of ASME, Journal of Engineering for Industry, Vol. 107, pp. 349–354.

    Article  Google Scholar 

  8. Lei, S., Shin, Y.C., and Incropera, F.P. (1999), Thermo-mechanical modeling of orthogonal machining process by finite element analysis, International Journal of Machine Tools and Manufacture, Vol. 39, pp. 731–750.

    Article  Google Scholar 

  9. Mamalis, A.G., Horvath, M., Branis, A.S. and Manolakos, D.E. (2001), Finite element simulation of chip formation in orthogonal metal cutting, Journal of Materials Processsing Technology, Vol. 110, pp. 19–27.

    Article  Google Scholar 

  10. Ceretti, E., Lazzaroni, C., Menegardo, L. and Altan, T. (2000), Turning simulations using a three-dimensional FEM code, Journal of Materials Processsing Technology, Vol. 98, pp. 99–103.

    Article  Google Scholar 

  11. Kececioglu, D. (1958), Shear strain rate in metal cutting and its effect on shear flow stress, Transactions of ASME, Vol. 80, pp. 158–168.

    Google Scholar 

  12. Jain, V.K. and Gupta, B.K. (1987), Effects of accelerated tests on shear flow stress in machining, Transactions of ASME, Journal of Engineering for Industry, Vol. 109, pp. 206–212.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Finite Element Modeling of Orthogonal Machining Process. In: Modeling of Metal Forming and Machining Processes. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84800-189-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-189-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-188-6

  • Online ISBN: 978-1-84800-189-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics