Skip to main content

Assembly Line Balancing Models

  • Chapter
Network Models and Optimization

Part of the book series: Decision Engineering ((DECENGIN))

  • 3975 Accesses

Abstract

From ancient times to the modern day, the concept of assembly has naturally been changed a lot. The most important milestone in assembly is the invention of assembly lines (ALs). In 1913, Henry Ford completely changed the general concept of assembly by introducing ALs in automobile manufacturing for the first time. He was the first to introduce a moving belt in a factory, where the workers were able to build the famous model-T cars, one piece at a time instead of one car at a time. Since then, the AL concept revolutionized the way products were made while reducing the cost of production. Over the years, the design of efficient assembly lines received considerable attention from both companies and academicians. A well-known assembly design problem is assembly line balancing (ALB), which deals with the allocation of the tasks among workstations so that a given objective function is optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scholl, A. (1999). Balancing and Sequencing of Assembly Lines. Physica-Verlag, Heidelberg.

    Google Scholar 

  2. Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research, 168, 694-715.

    Article  MATH  MathSciNet  Google Scholar 

  3. Baybars, I. (1986). A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem. Management Science, 32, 909-932.

    MATH  MathSciNet  Google Scholar 

  4. Kim, Y. K., Kim, Y. J., & Kim, Y. H. (1996). Genetic algorithms for assembly line balancing with various objectives. Computers & Industrial Engineering, 30(3), 397-409.

    Article  Google Scholar 

  5. Helgeson, W. B., Salveson, M. E., & Smith, W. W. (1954). How to balance an assembly line, Technical Report, Carr Press, New Caraan, Conn.

    Google Scholar 

  6. Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6, 18-25.

    Google Scholar 

  7. Bowman, E. H. (1960). Assembly line balancing by linear programming. Operations Research, 8(3), 385-389.

    MATH  Google Scholar 

  8. Held, M., Karp, R. M., & Shareshian, R. (1963). Assembly line balancing-Dynamic programming with precedence constraints. Operations Research, 11, 442-459.

    MATH  Google Scholar 

  9. Jackson, J. R. (1956). A Computing Procedure for a Line Balancing Problem. Management Science, 2, 261-272.

    Google Scholar 

  10. Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller R.E & Thatcher J.W. Editors: Complexity of Computer Applications, 85-104, New York: Plenum Press.

    Google Scholar 

  11. Dar-El, E. M. (1973). MALB-A heuristic technique for balancing large single-model assembly lines. AIIE Transactions, 5(4), 343-356.

    Google Scholar 

  12. Scholl, A. & Voss, S. (1996). Simple assembly line balancing-heuristic approaches. Journal of Heuristics, 2, 217-244.

    Article  Google Scholar 

  13. Suresh, G., & Sahu, S. (1994). Stochastic assembly line balancing using simulated annealing. International Journal of Production Research, 32(8), 1801-1810.

    Article  MATH  Google Scholar 

  14. Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin packing and line balancing. Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, 1189-1192.

    Google Scholar 

  15. Bautista, J., & Pereira, J. (2002). Ant algorithms for assembly line balancing, Lecture Notes in Computer Science, 2463, 65-75.

    Article  Google Scholar 

  16. Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A comparative evaluation of heuristic line balancing techniques. Management Science, 32, 430-454.

    Article  Google Scholar 

  17. Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. International Journal of Production Research, 27, 637-670.

    Article  Google Scholar 

  18. Erel, E., & Sarin, S. C. (1998). A survey of the assembly line balancing procedures. Production Planning and Control, 9, 414-434.

    Article  Google Scholar 

  19. Rekiek, B., Dolgui, A., Delchambre, A., & Bratcu, A. (2002). State of art of optimization methods for assembly line design. Annual Reviews in Control, 26, 163-174.

    Article  Google Scholar 

  20. Scholl, A. & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168, 666-693.

    Article  MATH  MathSciNet  Google Scholar 

  21. Rekiek, B. & Delchambre, A. (2006). Assembly line design: The balancing of mixed-model hybrid assembly lines with genetic algorithms. Springer Series in Advanced Manufacturing, London.

    Google Scholar 

  22. Ozmehmet Tasan, S. & Tunali, S. (2007). A review of the current applications of genetic algorithms in assembly line balancing. Journal of Intelligent Manufacturing, DOI: 10.1007/s10845-007-0045-5.

    Google Scholar 

  23. Gen, M., & Cheng, R. (2000). Genetic Algorithms and Engineering Optimization, New York: John Wiley & Sons.

    Google Scholar 

  24. Leu, Y. Y., Matheson, L. A., & Rees, L. P. (1994). Assembly line balancing using genetic algorithms with heuristic generated initial populations and multiple criteria. Decision Sciences, 15, 581-606.

    Article  Google Scholar 

  25. Anderson, E. J., & Ferris, M. C. (1994). Genetic Algorithms for Combinatorial Optimization: The Assembly Line Balancing Problem. ORSA Journal on Computing, 6, 161-173.

    MATH  Google Scholar 

  26. Rubinovitz, J., & Levitin, G. (1995). Genetic algorithm for assembly line balancing. International Journal of Production Economics, 41, 343-354.

    Article  Google Scholar 

  27. Tsujimura, Y., Gen, M., & Kubota, E. (1995). Solving fuzzy assembly line balancing using genetic algorithms. Computers & Industrial Engineering, 29(1-4), 543-547.

    Article  Google Scholar 

  28. Suresh, G., Vinod, V. V., & Sahu, S. (1996). A genetic algorithm for assembly line balancing. Production Planning and Control, 7(1), 38-46.

    Article  Google Scholar 

  29. Falkenauer, E. (1997). A grouping genetic algorithm for line balancing with resource dependent task times. Proceedings of the Fourth International Conference on Neural Information Processing, New Zealand, 464-468.

    Google Scholar 

  30. Ajenblit, D. A., & Wainwright, R. L. (1998). Applying genetic algorithms to the U-shaped assembly line balancing problem. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA, 96-101.

    Google Scholar 

  31. Chan, C. C. K., Hui, P. C. L., Yeung, K. W., & Ng, F. S. F. (1998). Handling the assembly line balancing problem in the clothing industry using a genetic algorithm. International Journal of Clothing Science and Technology, 10(1), 21-37.

    Article  Google Scholar 

  32. Kim, Y. J., Kim, Y. K., & Cho, Y. (1998). A heuristic-based genetic algorithms for workload smoothing in assembly lines. Computers & Operations Research, 25(2), 99-111.

    Article  MATH  Google Scholar 

  33. Rekiek, B., de Lit, P., Pellichero, F., Falkenauer, E., & Delchambre, A. (1999). Applying the equal piles problem to balance assembly lines. Proceedings of the ISATP 1999, Porto, Portugal, 399-404.

    Google Scholar 

  34. Bautista, J., Suarez, R., Mateo, M., & Companys, R. (2000). Local search heuristics for the assembly line balancing problem with incompatibilities between tasks. Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, 2404-2409.

    Google Scholar 

  35. Kim, Y. K., Kim, Y., & Kim, Y. J. (2000). Two-sided assembly line balancing: a genetic algorithm approach. Production Planning and Control, 11(1), 44-53.

    Article  Google Scholar 

  36. Ponnambalam, S. G., Aravindan, P., Naidu, G., & Mogileeswar, G. (2000). Multi-objective genetic algorithm for solving assembly line balancing problem. International Journal of Advanced Manufacturing Technology, 16(5), 341-352.

    Article  Google Scholar 

  37. Sabuncuoglu, I., Erel, E., & Tanyer, M. (2000). Assembly line balancing using genetic algorithms. Journal of Intelligent Manufacturing, 11(3) 295-310.

    Article  Google Scholar 

  38. Carnahan, B. J., Norman, B. A., & Redfern, M. S. (2001). Incorporating physical demand criteria into assembly line balancing. IIE Transactions, 33, 875-887.

    Google Scholar 

  39. Simaria, A. S., & Vilarinho, P. M. (2001a). A genetic algorithm approach for balancing mixed model assembly lines with parallel workstations. Proceedings of The 6th Annual International Conference on Industrial Engineering Theory, Applications and Practice, November 18-20, 2001, San Francisco, USA.

    Google Scholar 

  40. Chen, R. S., Lu, K. Y., & Yu, S. C. (2002). A hybrid genetic algorithm approach on multiobjective of assembly planning problem. Engineering Applications of Artificial Intelligence, 15, 447-457.

    Article  Google Scholar 

  41. Goncalves, J. F., & De Almedia, J. R. (2002). A hybrid genetic algorithm for assembly line balancing. Journal of Heuristic, 8, 629-642.

    Article  Google Scholar 

  42. Miltenburg, J. (2002). Balancing and sequencing mixed-model U-shaped production lines. International Journal of Flexible Manufacturing Systems, 14, 119-151.

    Article  Google Scholar 

  43. Valente, S. A., Lopes, H. S., & Arruda, L. V. R. (2002). Genetic algorithms for the assembly line balancing problem: a real-world automotive application. In: Roy, R., Kppen, M., Ovaska, S., Fukuhashi, T., Hoffman, F. Soft Computing in Industry - Recent Applications. Berlin: Springer-Verlag, 319-328.

    Google Scholar 

  44. Brudaru, O., & Valmar, B. (2004). Genetic algorithm with embryonic chromosomes for assembly line balancing with fuzzy processing times. The 8th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology, TMT 2004, Neum, Bosnia and Herzegovina.

    Google Scholar 

  45. Martinez, U., & Duff, W. S. (2004). Heuristic approaches to solve the U-shaped line balancing problem augmented by Genetic Algorithms. In the Proceedings of the 2004 Systems and Information Engineering Design Symposium, 287-293.

    Google Scholar 

  46. Simaria, A. S., & Vilarinho, P. M. (2004). A genetic algorithm based approach to mixed model assembly line balancing problem of type II. Computers and Industrial Engineering, 47, 391-407.

    Article  Google Scholar 

  47. Stockton, D. J., Quinn, L., & Khalil, R. A. (2004a). Use of genetic algorithms in operations management Part 1: applications. Proceeding of the Institution of Mechanical Engineers-Part B: Journal of Engineering Manufacture, 218(3), 315-327.

    Google Scholar 

  48. Stockton, D. J., Quinn, L., & Khalil, R. A. (2004b). Use of genetic algorithms in operations management Part 2: results. Proceeding of the Institution of Mechanical Engineers-Part B: Journal of Engineering Manufacture, 218(3), 329-343.

    Article  Google Scholar 

  49. Brown, E. C., & Sumichrast, R. T. (2005). Evaluating performance advantages of grouping genetic algorithms. Engineering Applications of Artificial Intelligence, 18, 1-12.

    Article  Google Scholar 

  50. Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic assembly line balancing. European Journal of Operational Research, 168, 811-825.

    Article  MATH  MathSciNet  Google Scholar 

  51. Noorul Haq, A., Jayaprakash, J., & Rengarajan, K. (2006). A hybrid genetic algorithm approach to mixed-model assembly line balancing. International Journal of Advanced Manufacturing Technology, 28, 337-341.

    Article  Google Scholar 

  52. Runarsson, T. P., & Jonsson, M.T. (1999). Genetic production systems for intelligent problem solving. Journal of Intelligent Manufacturing, 10, 181-186.

    Article  Google Scholar 

  53. Hoffmann T. R. (1992). EUREKA A hybrid system for assembly line balancing, Management Science, 38, 39-47

    MATH  Google Scholar 

  54. Chen, Y. Q. (2007). Study on Multi-objective Assembly Line Balancing Problem by Hybrid Evolutionary Algorithm. Ms Thesis, Waseda University, Graduate School of Information, Production and Systems, Kitakyushu, Japan.

    Google Scholar 

  55. Baudin, M. (2002). Lean Assembly: The nuts and bolts of making assembly operations flow. Productivity, New York.

    Google Scholar 

  56. Wemmerlov, U., & Hyer, N. L. (1989). Cellular manufacturing in the U.S. industry: A survey of users, International Journal of Production Research, 27(9), 1511-1530.

    Article  Google Scholar 

  57. Miltenburg, J., & Wijngaard, J. (1994). The U-line line balancing problem. Management Science, 40(10), 1378-1388.

    MATH  Google Scholar 

  58. Monden, Y. (1998). Toyota production system–An integrated approach to just-in-time, 3rd ed. Dordrecht: Kluwer.

    Google Scholar 

  59. Scholl, A. & Klein, R. (1999). Balancing assembly lines effectively-a computational comparison. European Journal of Operational Research, 114, 50-58.

    Article  MATH  Google Scholar 

  60. Hwang, R. K., Katayama, H., & Gen, M. (2007). U-shaped Assembly Line Balancing Problem with Genetic Algorithm. International Journal of Production Research, DOI: 10.1080/00207540701247906.

    Google Scholar 

  61. Rubinovitz, J. & Bukchin, J. (1993). RALB-a heuristic algorithm for design and balancing of robotic assembly line. Annals of the CIRP, 42, 497-500.

    Google Scholar 

  62. Rubinovitz, J. & Bukchin, J. (1991). Design and balancing of robotic assembly lines. Proceedings of the 4th World Conference on Robotics Research, Pittsburgh, PA.

    Google Scholar 

  63. Bukchin, J. & Tzur, M. (2000). Design of flexible assembly line to minimize equipment cost. IIE Transactions, 32, 585-598.

    Google Scholar 

  64. Tsai, D. M. &. Yao, M. J (1993). A line-balanced-base capacity planning procedure for seriestype robotic assembly line. International Journal of Production Research, 31, 1901-1920.

    Article  Google Scholar 

  65. Kim, H. & Park, S. (1995). Strong cutting plane algorithm for the robotic assembly line balancing. International Journal of Production Research, 33, 2311-2323.

    Article  MATH  Google Scholar 

  66. Khouja, M., Booth, D. E., Suh, M., & Mahaney, Jr. J. K. (2000). Statistical procedures for task assignment and robot selection in assembly cells. International Journal of Computer Integrated manufacturing, 13, 95-106.

    Article  Google Scholar 

  67. Nicosia, G., Paccarelli, D. & Pacifici, A. (2002). Optimally balancing assembly lines with different workstations. Discrete Applied Mathematics, 118, 99-113.

    Article  MATH  MathSciNet  Google Scholar 

  68. Krasnogor, N., & Smith, J. (2000). A memetic algorithm with self-adaptive local search: TSP as a case study. Proceedings of Genetic and Evolutionary Computation Conference, July 10-12, Las Vegas, NV, 987-994, 2000.

    Google Scholar 

  69. Moscato, P., & Norman, M. (1992). A memetic approach for the traveling salesman problem: implementation of a computational ecology for combinatorial optimization on messagepassing systems. Proceedings of the International Conference on Parallel Computing and Transputer Applications, Amsterdam.

    Google Scholar 

  70. Scholl, A. (1993). Data of Assembly Line Balancing Problems. Schriften zur Quantitativen Betriebswirtschaftslehre 16/93, Th Darmstadt.

    Google Scholar 

  71. Gao, J. (2007). A study on Hybrid Genetic Algorithms for Manufacturing Optimization. PhD Thesis, Xi’an Jiaotong University, Xi’an, China.

    Google Scholar 

  72. Lin, L., Gen, M. & Gao, J. (2008) Optimization and improvement in robot-based assembly line system by hybrid genetic algorithm, IEEJ Transactions on Electronics, Information and Systems, in reviewing.

    Google Scholar 

  73. Meyr, H. (2004). Supply chain planning in the German automotive industry. OR Spectrum, 26(4), 447-470.

    Article  MATH  Google Scholar 

  74. Miltenburg, J., & Sinnamon, G. (1989). Scheduling mixed model multi-level just-in-time production systems. International Journal of Production Research, 27, 1487-1509.

    Article  Google Scholar 

  75. Brans, J.P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European Journal of Operational Research, 24, 228-238.

    Article  MATH  MathSciNet  Google Scholar 

  76. Falkenauer, E. (1991). A genetic algorithm for grouping. Proceedings of the Fifth International Symposium on Applied Stochastic Models and Data Analysis, Granada, Spain.

    Google Scholar 

  77. Rekiek, B. (2000). Assembly Line Design (multiple objective grouping genetic algorithm and the balancing of mixed-model hybrid assembly line). PhD Thesis, Free University of Brussels, CAD/CAM Department, Brussels, Belgium.

    Google Scholar 

  78. Falkenauer, E. (1998). Genetic Algorithms for Grouping Problems. Wiley, New York.

    Google Scholar 

  79. Falkenauer, E. (1995). Solving equal piles with the Grouping Genetic Algorithm. In L. J. Eshelman (ed.), Proceedings of the Sixth International Conference on Genetic Algorithms, 492-497. Morgan Kaufmann Publ., San Francisco, CA.

    Google Scholar 

  80. Optiline. www.optimaldesign.com/OptiLine/OptiLine.htm.

    Google Scholar 

  81. Ozmehmet Tasan, S. (2007). Solving Simple and Mixed-Model Assembly Line Balancing Problems Using Hybrid Meta-Heuristic Approaches. PhD Thesis, Dokuz Eylul University, Graduate School of Natural and Applied Sciences, Izmir, Turkey.

    Google Scholar 

  82. Goldberg, D. E. (2002). Design of innovation: Lessons from and for competent genetic algorithms. Boston, MA: Kluwer Acadamic Publishers.

    MATH  Google Scholar 

  83. Haupt, R. L. & Haupt, S. E. (2004). Practical Genetic Algorithms. Second edition with CD, Wiley, New York, NY.

    MATH  Google Scholar 

  84. Chiang, W. C. (1998). The application of a tabu search metaheuristic to the assembly line balancing problem. Annals of Operations Research, 77, 209-227.

    Article  MATH  MathSciNet  Google Scholar 

  85. Glover, F., & Laguna, M. (1998). Tabu Search. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  86. Ozmehmet Tasan, S. & Tunali, S. (2006). Improving the genetic algorithms performance in simple assembly line balancing. Lecture Notes in Computer Science, 3984, 78-87.

    Article  Google Scholar 

  87. Ozmehmet Tasan, S. & Tunali, S. (2007). Hybrid meta-heuristic approaches for solving SALBP. Computers & Industrial Engineering, in reviewing.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

(2008). Assembly Line Balancing Models. In: Network Models and Optimization. Decision Engineering. Springer, London. https://doi.org/10.1007/978-1-84800-181-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-181-7_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-180-0

  • Online ISBN: 978-1-84800-181-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics