Skip to main content

Advanced Planning and Scheduling Models

  • Chapter
Network Models and Optimization

Part of the book series: Decision Engineering ((DECENGIN))

  • 3838 Accesses

Abstract

Advanced planning and scheduling (APS) refers to a manufacturing management process by which raw materials and production capacity are optimally allocated to meet demand. APS is especially well-suited to environments where simpler planning methods cannot adequately address complex trade-offs between competing priorities. However, most scheduling problems of APS in the real world face inevitable constraints such as due date, capability, transportation cost, set up cost and available resources. Generally speaking, we should obtain an effective “flexibility” not only as a response to the real complex environment but also to satisfy all the combinatorial constraints. Thus, how to formulate the complex problems of APS and find satisfactory solutions play an important role in manufacturing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eck, M. (2003). Advanced Planning and Scheduling, BWI paper: http://obp.math.vu.nl/logistics/papers/vaneck.doc

    Google Scholar 

  2. Bermudez, J. (1998). Advanced Planning and Scheduling: Is it as good as it sounds? The report on Supply Chain Management, March, 3–18.

    Google Scholar 

  3. Holland, J., (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.

    Google Scholar 

  4. Gen, M. and R., Cheng, (1997). Genetic Algorithms and Engineering Design, John Wiley Sons, New York.

    Google Scholar 

  5. Gen, M. and Cheng, R., (2002). Genetic Algorithms and Engineering Optimization, New York: John Wiley & Sons.

    Google Scholar 

  6. Adams, J., Balas, E., & Zawack, D. (1987). The shifting bottleneck procedure for job shop scheduling, Internatioanl Journal of Flexible Maunfacturing Systems, 34(3), 391–401.

    MathSciNet  Google Scholar 

  7. Baker, K. (1974). Introduction to sequencing & scheduling, NewYork, John Wiley & Sons.

    Google Scholar 

  8. Baker, k. & Scudder, G. (1990). Sequencing with earliness & trainess penalties: A review, Operations Research, 38, 22–36.

    MathSciNet  MATH  Google Scholar 

  9. Bean, J. (1994). Genetic algorithms & random keys for sequencing & optimizaion, ORSA Journal on Computing, 6(2), 154–160.

    MATH  Google Scholar 

  10. Blackstone, J., Phillips, D., & Hogg, G. (1982). A state of the art survey of dispatching rules for maunfacturing job shop operations, International Journal of Production Research, 20, 26–45.

    Article  Google Scholar 

  11. Croce, F., Tadei, R., & Volta, G. (1995). A genetic algorithm for the job shop problem, Computer & Operations Research, 22, 15–24.

    Article  MATH  Google Scholar 

  12. Dauzere-Pers, S. & Lasserre, J. (1993). A modified shifting bottleneck procedure for job-shop scheduling, International Journal of Production Researches, 31, 923–932.

    Article  Google Scholar 

  13. Davis, L. (1985). Job shop scheduling with genetic algorithms, Proceedings of the First International Conference on Genetic Algorithms, 136–140.

    Google Scholar 

  14. De Jong, K. (1994). Genetic algorithms: a 25 year perspective, Computational Intelligence: Imitating Life, 125–134.

    Google Scholar 

  15. Dorndorf, W. & Pesch, E. (1995). Evolution based learning in a job shop scheduling enviorment, Computer & Operations Research, 22, 25–40.

    Article  MATH  Google Scholar 

  16. Fralkenauer, E. & Bouffoix, S. (1991). A genetic algorithm for job shop, Proceedings of IEEE International Conference on Robotics & Automation, 824–829.

    Google Scholar 

  17. Fisher, H. & Thompson, G. (1963). Probabilistic learning combinations of job-shop scheduling rules, Industrial Scheduling, 15, 1225–1251.

    Google Scholar 

  18. Giffler, B. & Thompson, G. (1960). Algorithms for solving production scheduling problem, Operations Research, 8(4), 487–503.

    MathSciNet  MATH  Google Scholar 

  19. Haupt, R. (1989). A survey of priority-rule based scheduling problem, OR Spectrum, 11, 3– 16.

    MathSciNet  MATH  Google Scholar 

  20. Kubota, A. (1995). Study on optimal scheduling for manufacturing system by genetic algorithms, Master’s thesis, Asikaga Institute of Technology, Ashikaga, Japan.

    Google Scholar 

  21. Morton, T. & Pentico, D. (1993). Heuristic scheduling systems-with applications to a production systems & project management, New York, John Wiley & Sons.

    Google Scholar 

  22. Norman, B. & Bean, J. (1995). Random keys genetic algorithm for job-shop scheduling:unabridged version, Technical report, University of Michigan, Ann Arbor.

    Google Scholar 

  23. Norman, B. & Bean, J. (1995). Random keys genetic algorithm for scheduling, Technical report, Universuty of Michigan, Ann Arbor.

    Google Scholar 

  24. Orvosh, D. & Davis, L. (1994). Using a genetic algorithm to optimize problems with Feasibility constrains, Proceedings of the First IEEE Conference on Evolutionary Computation, 548–552.

    Google Scholar 

  25. Panwalkar, S. & Iskander, W. (1977). A survey of scheduling rules, Operations Research, 25, 45–61.

    MathSciNet  MATH  Google Scholar 

  26. Storer, R., Wu, S., & Vaccari, R. (1992). New search spaces for sequencing problems with application to job shop scheduling, Management Science, 38(10), 1495–1510.

    MATH  Google Scholar 

  27. Blazewicz, J., Ecker, K. H., Schmidt, G. and Weglarz, J., (1994). Scheduling in Computer and Manufacturing Systems, Springer.

    Google Scholar 

  28. Brucker, P., (1998). Scheduling Algorithms, Springer.

    Google Scholar 

  29. French, S., (1982). Sequencing and Scheduling. Mathematics and its applications, Ellis Horwood Limited.

    Google Scholar 

  30. Cheng, R., Gen, M. and Tsujimura, Y. (1996). A Tutorial Sur-vey of Job-Shop Scheduling Problems Using Genetic Algorithm, Part I: Representation. Computers and Industrial Engineering, 30(4), 983–997,

    Article  Google Scholar 

  31. Roy, B. and Sussmann, B. (1964). Les problems d’ordonnancement avec contraintes disjonctives, Note D.S. No. 9 bis, SEMA, Paris, France.

    Google Scholar 

  32. Balas, E., (1969). Machine Scheduling via disjunctive graphs : An implicit enumeration algorithm, Operation Research, 17, 941–957.

    MathSciNet  MATH  Google Scholar 

  33. Grabot, B. and Geneste, L., (1994). Dispatching rules in scheduling: A fuzzy approach, International Journal of Production Research, 32(4), 903-915.

    Article  MATH  Google Scholar 

  34. Yang, S. and Wang, D. (2000). Constraint Satisfaction Adaptive Neural Network and Heuristics Combined Approaches for Generalized Job-Shop Scheduling, IEEE Trans. on Neural Networks, 11(2), 474–486.

    Article  Google Scholar 

  35. Cheng, R., Gen, M. and Tsujimura, Y. (1999). A Tutorial Survey of Job-shop Scheduling Problems using Genetic Algorithms, Part II: Hybrid Genetic Search Strategies, Computers and Industrial Engineering, 36(2), 343–364.

    Article  Google Scholar 

  36. Nowicki, E. and Smutnicki, C., (2005). An advanced tabu search algorithm for the job-shop problem, Journal of Scheduling, 8(2), 145–159.

    Article  MathSciNet  MATH  Google Scholar 

  37. Tavakkoli-Moghaddam, R., Jolai, F., Vaziri, F., Ahmed, P.K. and Azaron, A., (2005). A hybrid method for solving stochastic job shop scheduling problems, Applied Mathematics and Computation, 170(1), 185–206.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ida, k. and Osawa, A., (2005). proposal of algorithm for shortening idel time on job-shop scheduling problem and its numerical experiments, J Jpn Ind manage Assoc, 56(4), 294–301.

    Google Scholar 

  39. Gonc¸alves, J. F., Magalh˜aes Mendes, J. J. and Resende, M. G. C., (2005). A hybrid genetic algorithm for the job shop scheduling problem, European Journal of Operational Research, 167(1), 77–95.

    Article  MathSciNet  Google Scholar 

  40. Garey, M. R. and Johnson,D. S., (1978). Strong NP-Completeness Results: Motivation, Examples and Implications, Journal of the ACM, 25, 499–508.

    Article  MATH  Google Scholar 

  41. Garey, M. R., Johnson, D. S. and Sethi, R., (1976). The complexity of flowshop and jobshop scheduling, textitMathematics of Operations Research, 1(2), 117–129.

    MathSciNet  MATH  Google Scholar 

  42. Fisher, H. and Thompson,G. L., (1963). Probabilistic learning combinations of local job-shop scheduling rules, In J.F. Muth and G.L. Thompson, Industrial Scheduling, Prentice Hall, 225-251.

    Google Scholar 

  43. Adams, J., Balas, E. and Zawack, D., (1988). procedure for The shifting bottleneck job shop scheduling, Management Science, 34(3), 391–401.

    MathSciNet  MATH  Google Scholar 

  44. Prins, C., (2000). Competitive genetic algorithms for the open-shop scheduling problem, Mathematical Methods of Operations Research, 52, 389–411.

    Article  MathSciNet  MATH  Google Scholar 

  45. Conway, R.W., Maxwell, W.L., and Miller, L.W., (1967). Theory of Scheduling, Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  46. Baker, K.R., (1974). Introduction to Sequencing and Scheduling, Wiley, New York.

    Google Scholar 

  47. Sprecher, A., Kolisch R. and Drexl, A., (1995). Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem, European Journal of Operational Research, 80(1), 94–102.

    Article  MATH  Google Scholar 

  48. Wiest, J. D., (1964). Some properties of schedules for large projects with limited resources, Operations Research, 12, 395–418.

    Google Scholar 

  49. Nowicki, E. and Smutnicki, C., (1996). A fast taboo search algorithm for the job-shop problem, Management Science, 42(6), 797-813.

    MATH  Google Scholar 

  50. Ying K. C. and Liao C. J. (2004). An Ant Colony Optimization for permutation flow-shop sequencing. Computers & Operations Research, 31(5), 791–801.

    Article  MATH  Google Scholar 

  51. Jain A. S. and Meeran S. (1998). A State-of -the-art Review of Job-shop Scheduling Techniques, Technical Report, Department of Applied Physics, Electronics and Mechanical Engineering, University of Dundee, Scotland.

    Google Scholar 

  52. Balas, E. and Vazacopoulos, A., (1998). Guided local search with shifting bottleneck for job shop scheduling. Management Science, 44(2), 262–275.

    MATH  Google Scholar 

  53. Bruker, P. and Schlie, R., (1990). Job-shop scheduling with multi-purpose machines. Computing, 45, 369–375.

    Article  MathSciNet  Google Scholar 

  54. Brandimarte, P., (1993). Routing and scheduling in a flexible job shop by tabu search, Annals of Operations Research, 41, 157–183.

    Article  MATH  Google Scholar 

  55. Chambers, J. B., (1996). Classical and Flexible Job Shop Scheduling by Tabu Search. PhD thesis, University of Texas at Austin, Austin, U.S.A.

    Google Scholar 

  56. Charon, I., (1996). Germinated, A. and Hudry, O., Methodes d’Optimization Combinatoires, Paris, France: Masson.

    Google Scholar 

  57. Kacem, I., Hammadi, S. and Borne, P., (2002). Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Trans. Systems, Man, and Cybernetics-Part C, 32(1), 1-13.

    Article  Google Scholar 

  58. Mati, Y., Rezg, N. and Xie, X., (2001). An Integrated Greedy Heuristic for a Flexible Job Shop Scheduling Problem, IEEE International Conference on Systems, Man, and Cybernetics, 4, 2534–2539.

    Google Scholar 

  59. Najid, N.M., Dauzere-Peres, S. and Zaidat, A., (2002). A modified simulated annealing method for flexible job shop scheduling problem, IEEE International Conference on Systems, Man and Cybernetics, 5(6).

    Google Scholar 

  60. Xia, W. and Wu, Z., (2005). An effective hybrid optimization approach for muti-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 48, 409–425.

    Article  Google Scholar 

  61. Zhang, H. and Gen, M., (2005). Multistage-based genetic algorithm for flexible job-shop scheduling problem. Journal of Complexity International, 11, 223–232.

    Google Scholar 

  62. Wu, Z. and Weng, M. X., (2005). Multiagent scheduling method with earliness and tardiness objectives in flexible job shops. IEEE Trans. System, Man, and Cybernetics-Part B, 35(2), 293–301.

    Article  Google Scholar 

  63. Berretta, R. and Rodrigues, L. F., (2004). A Genetic algorithm for a multistage capacitated lot-sizing problem, International Journal of Production Economics, 87(1), 67–81.

    Article  Google Scholar 

  64. Dellaert, N., Jeunet, J. and Jornard, N., (2000). A genetic algorithm to solve the general multi-level lot-sizing problem with time-varying costs, International Journal of Production Economy, 68, 241–257.

    Article  Google Scholar 

  65. Knowles, J. D. and Corne, D. W., (2000). M-PAES: A Genetic Algorithm for Multiobjective Optimization, Proc. of the Congress on Evolutionary Computation, 1, 325–332.

    Google Scholar 

  66. Krasnogor, N., (2002), Studies on the theory and design space of Genetic algorithms, Ph.D. dissertation, Univ. of the West of England, Bristol, U.K.

    Google Scholar 

  67. Kusiak, A., (2000). Computational Integrated in Design & Manufacturing, John Wiley & Sons, New York.

    Google Scholar 

  68. Lopez, O. and Ramirez, M., (2005).A STEP-based manufacturing information system to share flexible manufacturing resources data, Journal of Intelligent Manufacturing, 16(3), 287–301.

    Article  Google Scholar 

  69. Moon, C., Lee, M., Seo, Y. and Lee, Y. H., (2002). Integrated machine tool selection and operation sequencing with capacity and precedence constraints using genetic algorithm, Computers & Industrial Engineering, 43(3), 605–621.

    Article  Google Scholar 

  70. Moon, C., Lee, Y. H. and Gen, M., (2004). Evolutionary Algorithm for Process plan Selection with Multiple Objectives, Journal of Industrial Engineering and Management Systems, 3(2), 125–131.

    Google Scholar 

  71. Moon, C., (2004). Evolutionary System Approach for Advanced Planning in Multi-Plant Chain, PhD dissertation, Waseda University, Japan.

    Google Scholar 

  72. Moon, C., Kim, J. S. and Gen, M., (2004). Advanced planning and scheduling based on precedence and resource constraints for e-plant chains, International Journal of Production Research, 42(15), 2941–2955.

    Article  MATH  Google Scholar 

  73. Moon, C. and Seo, Y., (2005). Advanced planning for minimizing makespan with load balancing in multi-plant chain, International Journal of Production Research. 43(20), 4381–4396.

    Article  Google Scholar 

  74. Nishi, T. and Konishi, M., (2005). An autonomous decentralized supply chain planning system for multi-stage production processes, Journal of Intelligent Manufacturing, 16(3), 259– 275.

    Article  Google Scholar 

  75. Raa, B. and Aghezzaf, E. H., (2005). A robust dynamic planning strategy for lot-sizing problems with stochastic demands, Journal of Intelligent Manufacturing, 16(2), 207–213.

    Article  Google Scholar 

  76. Su, P., Wu, N. and Yu, Z., (2003) Resource selection for distributed manufacturing in agile manufacturing, Proc. of IEEE International Conference on Systems, Man and Cybernetics, 2(1), 1578–1582.

    Google Scholar 

  77. Tan, W., (2000). Integration of process planning and scheduling-a review, Journal of Intelligent Manufacturing, 11(1), 51–63.

    Article  Google Scholar 

  78. Tan, W., (2004). A linearized polynomial mixed integer programming model for the integration of process planning and scheduling, Journal of Intelligent Manufacturing, 15(5), 593– 605.

    Article  Google Scholar 

  79. Nishioka, Y. (2002). A New Turn of Manufacturing Enterprise Architecture with Advanced Planning and Scheduling, Management Systems, Japan Industrial Management Association, 12(1), 9–13 (in Japanese).

    Google Scholar 

  80. PSLX Consortium (2003). PSLX Technical Specifications, Recommendation, Version 1.0, [Online]. Available:http://www.pslx.org/.

    Google Scholar 

  81. Okamoto, A., Gen, M. & Sugawara, M. (2006). Integrated Data Structure and Scheduling Approach for Manufacturing & Transportation using Hybrid Multistage Operation-based Genetic Algorithm, Journal of Intelligent Manufacturing, 17, 411–421.

    Article  Google Scholar 

  82. W3C (2004). Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, [Online]. Available:http://www.w3.org/TR/2004/REC-xml-20040204.

    Google Scholar 

  83. MESX Joint Working Group. (2004). MESX White Paper, [Online]. Available:http://www.mstc.or.jp/faop/doc/informative/MESX-WP.pdf, (in Japanese).

    Google Scholar 

  84. Okamoto, A., Gen, M. & Sugawara, M. (2005). APS System based on Scheduler moGA & XML, Journal of the Society of Plant Engineers Japan, 17(2), 15–24 (in Japanese).

    Google Scholar 

  85. Hastings, N. A. J. & Yeh, C. -H. (1992). Bill of manufacture, Production and Inventory Management Journal, 4th Quarter, 27–31.

    Google Scholar 

  86. Nishioka, Y. (1999). Supply Chain Planning for Computer Optimized Manufacturing, Management Systems, Japan Industrial Management Association, 9(3), 132–136 (in Japanese).

    Google Scholar 

  87. Yang, J. B. (2001). GA-based discrete dynamic programming approach for scheduling in FMS environments, IEEE Transactions on Systems, Man & Cybernetics, Part B, 31(5), 824–835.

    Article  Google Scholar 

  88. Kim, K., Yamazaki, G., Lin, L. & Gen, M. (2004). Network-based hybrid genetic algorithm for scheduling in FMS environments, Artificial Life & Robotics, 8, 67–76.

    Article  Google Scholar 

  89. Bean, J. C. (1994). Genetics & random keys for sequencing & optimization, ORSA Journal on Computing, 6, 154–160.

    MATH  Google Scholar 

  90. W3C (2003). Scalable Vector Graphics (SVG) 1.1 Specification, W3C Recommendation, [Online]. Available:http://www.w3.org/TR/2003/REC-SVG11-20030114/.

    Google Scholar 

  91. Spears, W. M. & Dejong, K. A. (1991). On the virtues of parameterized uniform crossover, Proceedings of the Fourth International Conference on Genetic Algorithms, 230–236.

    Google Scholar 

  92. Applegate, D. & Cook, W. (1991). A computational study of the job shop scheduling problem, ORSA Journal of Computing, 3(2), 149–156.

    MATH  Google Scholar 

  93. Yamada, T. & Nakano, R. (1992). A genetic algorithm applicable to large-scale job-shop problems, Parallel Problem Solving from Nature: PPSN II, 281–290, Elsevier Science Publishers, North-Holland .

    Google Scholar 

  94. Gen, M.,Tsujimura, Y., & Kubota, E. (1994). Solving job-shop scheduling problem using genetic algorithms, Proceedings of the 16th International Conference on Computers & Industrial Engineering, 576–579, Ashikaga, Japan.

    Google Scholar 

  95. Okamoto, A., Gen, M. & Sugawara, M. (2005). Cooperation of Scheduling Agent & Transportation Agent in APS System, Proceedings of the J.S.L.S. Kyushu Division Conference, 1–11 (in Japanese).

    Google Scholar 

  96. Okamoto, A., Gen, M. & Sugawara, M. (2005). APS System based on Scheduler moGA & XML, Journal of the Society of Plant Engineers Japan, 17(2), 15–24 (in Japanese).

    Google Scholar 

  97. Okamoto, A., Gen, M. & Sugawara, M. (2006). Integrated Data Structure & Scheduling Approach for Manufacturing & Transportation using Hybrid Multistage Operation-based Genetic Algorithm, Journal of Intelligent Manufacturing, 17, 411–421.

    Article  Google Scholar 

  98. Okamoto, A., Gen, M. & Sugawara, M. (2006). Integrated Scheduling Problem of Manufacturing & Transportation with Pickup & Delivery, International Journal of Logistics and SCM Systems, 1, 19–27.

    Google Scholar 

  99. Lee, C. Y. & Chen, Z. -L. (2001). Machine scheduling with transportation considerations, Journal of Scheduling, 4, 3–24.

    Article  MathSciNet  MATH  Google Scholar 

  100. Soukhal, A., Oulamara, A. & Martineau, P. (2005). Complexity of flow shop scheduling problems with transportation constraints, European Journal of Operational Research, 161, 32–41.

    Article  MathSciNet  MATH  Google Scholar 

  101. Yang, J. B. (2001). GA-based discrete dynamic programming approach for scheduling in FMS environments, IEEE Transactions on Systems, Man & Cybernetics, Part B, 31(5), 824– 835.

    Article  Google Scholar 

  102. Aiex, R. M. , Binato, S. & Resende, M. G. C. (2003). Parallel GRASP with path-relinking for job shop scheduling, Parallel computing in numerical optimization, 29(4), 393–430.

    Article  MathSciNet  Google Scholar 

  103. Binato, S., Hery, W.J., Loewenstern, D.M., & Resende, M.G.C., (2002). A GRASP for job shop scheduling. In: Ribeiro, C.C., Hansen, P. (Eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers.

    Google Scholar 

  104. Wang, L., & Zheng, D., (2001). An effective hybrid optimisation strategy for job-shop scheduling problems. Computers & Operations Research, 28, 585–596.

    Article  MathSciNet  MATH  Google Scholar 

  105. Gonc¸alves, J.F., & Beir˜ao, N.C., (1999). Um Algoritmo Genètico Baseado em Chaves Aleat`orias para Sequenciamento de Operac¸˜oes. Revista Associac¸ ao Portuguesa de Desenvolvimento e Investigac¸ ao Operacional, 19, 123–137 (in Portuguese).

    Google Scholar 

  106. Nowicki, E. & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem, Management Science, 42(6), 797–813.

    Article  MATH  Google Scholar 

  107. Cheng, R., Gen, M. & Sasaki, M. (1995). Film-copy deliverer problem using genetic algorithms, Computers and Industrial Engineering , 29(1–4), 549–553.

    Article  Google Scholar 

  108. Fang, H., Ross, P. & Corne, D. (1993). A promising genetic algorithm approach to jobshop scheduling re-scheduling and open-shop scheduling problems, Proceedings of the fifth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 375–382.

    Google Scholar 

  109. Paredis, J. (1992). Exploiting constraints as background knowledge for genetic algorithms: a case-study for scheduling, Parallel Problem Solving from Nature 2, PPSN-II, North-Holland. 231–240.

    Google Scholar 

  110. Nakano, R. & Yamada, T. (1992). Conventional genetic algorithms for job-shop problems, Proceedings of the fourth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 477–479.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

(2008). Advanced Planning and Scheduling Models. In: Network Models and Optimization. Decision Engineering. Springer, London. https://doi.org/10.1007/978-1-84800-181-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-181-7_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-180-0

  • Online ISBN: 978-1-84800-181-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics