Skip to main content

Communication Network Models

  • Chapter
Network Models and Optimization

Part of the book series: Decision Engineering ((DECENGIN))

  • 3552 Accesses

Abstract

Modeling and design of large communication and computer networks have always been an important area to both researchers and practitioners. The interest in developing efficient design models and optimization methods has been stimulated by high deployment and maintenance costs of networks, which make good network design potentially capable of securing considerable savings. For many decades, the area of network design had been relatively stable and followed the development of telephone networks and their smooth transition from analog to digital systems. In the past decade, however, networks have undergone a substantial change caused by the emergence and rapid development of new technologies and services, an enormous growth of traffic, demand for service availability and continuity, and attempts to integrate new networking and system techniques and different types of services in one network. As a consequence, today’s network designers face new problems associated with diverse technologies, complicated network architectures, and advanced resource and service protection mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coloquest [online]. http://www.coloquest.com/gigenet-network/

    Google Scholar 

  2. Pioro, M. & Medhi, D. (2004). Routing, Flow, Capacity Design in Communication & Computer Networks, Morgan Kaufmann.

    Google Scholar 

  3. Boorstyn, R. R. & Frank, H. (1977). Large-scale network topological optimization, IEEE Transasctions on Communication, COM-25(1), 29–47.

    Article  Google Scholar 

  4. Colbourn, C. J. (1987). The Combinatorics of Network Reliability, Oxford University Press.

    Google Scholar 

  5. Gerla, M. & Kleinrock, L. (1977). On the topological design of distributed computer networks, IEEE Transactions on Communications, COM-25(1), 48–60.

    Article  MathSciNet  Google Scholar 

  6. Kershenbaum, A. (1993). Telecommunications Network Design Algorithms. New York:McGraw-Hill, 1993.

    Google Scholar 

  7. Tanenbaum, A. S. (1981) Computer Networks, Prentice Hall, New Jersey.

    Google Scholar 

  8. Easu, L. R. & Williams, K. C. (1966). On teleprocessing system design: a method for approximating the optimal network, IBM System Journal, 5, 142–147.

    Article  Google Scholar 

  9. Sharma, R. & El-Bardai, M. (1970). Suboptimal communications networks synthesis, Proceedings of the IEEE International Conference on Communications, 19.11–19.16.

    Google Scholar 

  10. Kershenbaum, A. & Chou, W. (1974). A unified algorithm for designing multidrop teleprocessing networks, IEEE Transactions on Communications, 22, 1762–1772.

    Article  Google Scholar 

  11. Abuali, F. N., Wainwright, R. L. & Schoenefeld, D. A. (1995). Determinant factorization: a new encoding scheme for spanning tree applied to the probability minimum spanning tree problem, in Proceedings of 6th International Conference on Genetic Algorithms, 470–477.

    Google Scholar 

  12. Elbaum, R. & Sidi, M. (1996). Topological design of local-area networks using genetic algorithms, IEEE/ACM Transactions on Networking, 4(5), 766–778.

    Article  Google Scholar 

  13. Kim, J. R. (2000). Study on advanced genetic algorithms for reliable network design, Ph.D. Disertation, Ashikaga Institute of Technology.

    Google Scholar 

  14. Kim, J. R. & Gen, M. (1999). Genetic algorithm for solving bicriteria network topology design problem, Proceedings of the 1999 Congress on Evolutionary Computation, 2272– 2279.

    Google Scholar 

  15. Kim, J. R. & Gen, M. (2000). A genetic algorithm for bicriteria communication network topology design, Engineering Valuation & Cost Analysis, 3, 351–363, 2000.

    Google Scholar 

  16. Lo, C. C. & Chang, W. H. (2000). A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem, IEEE Transacion on System, Man & Cybernetics-Part B, 30(3), 461–470.

    Article  Google Scholar 

  17. Palmer, C. C. & Kershenbaum, A. (1995). An approach to a problem in network design using genetic algorithms, Networks, 26, 151–163.

    Article  MATH  Google Scholar 

  18. Zhou, G. & Gen, M. (1997). Approach to degree-constrained minimum spanning tree problem using genetic algorithm, Engineering Design & Automation, 3(2), 157–165.

    Google Scholar 

  19. Zhou, G. & Gen, M. (1997). A note on genetic algorithm approach to the degree-constrained minimum spanning tree problem, Networks, 30, 105–109.

    Article  Google Scholar 

  20. Zhou, G. & Gen, M. (2003). A genetic algorithm approach on tree-like telecommunication network design problem, Journal of Operational Research Society, 54(3), 248–254.

    Article  MATH  Google Scholar 

  21. Davis, L. & Coombs, S. (1989). Optimizing network link sizes with genetic algorithms, in Modeling and Simulation Methodology, Knowledge System’s Paradigms. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  22. Kumar, A., Pathak, R. M. & Gupta, Y. P. (1995). Genetic algorithm - based reliability optimization for computer network expansion, IEEE Transactions on Reliability, 44(1), 63–72.

    Article  Google Scholar 

  23. Kumar, A., Pathak, R. M., Gupta, Y. P. & Parsei, H. R. (1995). A genetic algorithm for distributed system topology design, Computers and Industrial Engineering, 28(3), 659–670.

    Article  Google Scholar 

  24. Ko, K. T., Tang, K. S., Chan, C. Y., Man, K. F. & Kwong, S. (1997). Using genetic algorithm to design mesh networks, IEEE Computer.

    Google Scholar 

  25. Dengiz, B., Altiparmak, F. & Smith, A. E. (1997). Efficient optimization of all-terminal reliable networks, IEEE Transactions on Reliability, 41(1), 18–26.

    Article  Google Scholar 

  26. Dengiz, B., Altiparmak, F. & Smith, A. E. (1997). Local search genetic algorithm for optimal design of reliable networks, IEEE Transactions on Evolutionary Computation, 1(3).

    Google Scholar 

  27. Deeter, D. L. & Smith, A. E. (1998). Economic design of reliable networks, IIE Transactions, 30, 1161-1174.

    Google Scholar 

  28. Pierre, S. & Legault, G. (1998). A genetic algorithm for designing distributed computer network topologies, IEEE Transactions on Systems, Man & Cybernetics-Part B: Cybernetics, 28(2), 249–257,

    Article  Google Scholar 

  29. Konak, A. & Smith, A. E. (1999). A hybrid genetic algorithm approach for backbone design of communication networks, Proceeding of the 1999 Congress on Evolutionary Computation, 1817–1823.

    Google Scholar 

  30. Cheng, S. T. (1998), Topological optimization of a reliable communication network, IEEE Transactions on Reliability, 47(3), 225–233.

    Article  Google Scholar 

  31. Liu, B. & Iwamura, K. (2000), Topological optimization models for communication network with multiple reliability goals, Computers & Mathematics with Applications, 39, 59–69.

    Article  MATH  MathSciNet  Google Scholar 

  32. Altiparmak, F., Dengiz, B. & Smith, A. E. (2003). optimal design of reliable computer networks: a comparison of metaheuristics, Journal of Heuristics, 9(6), 471–487.

    Article  Google Scholar 

  33. Altiparmak, F., Gen, M., Dengiz, B. & Smith, A. E. (2003). Topological optimization of communication networks with reliibility constraint by an evolutionary approach, Proceedings of International Workshop on Reliability and Its Applications, 183–188.

    Google Scholar 

  34. Papadimitriou, C. H. (1978). The complexity of the capacitated tree problem, Networks, 8, 217-230.

    Article  MathSciNet  Google Scholar 

  35. Chandy, K. M. & Lo, T. (1973). The capacitated minimum spanning tree, Networks, 3, 173-182.

    Article  MATH  MathSciNet  Google Scholar 

  36. Elias, D. & Ferguson, M. (1974). Topological design of multipoint teleprocessing networks, IEEE Transactions on Communications, 22, 1753-1762.

    Article  Google Scholar 

  37. Gavish, B. (1982). Topological design of centralized computer networks: formulation and algorithms, Networks, 12, 355–377.

    Article  MATH  MathSciNet  Google Scholar 

  38. Raidl, G. R. & Julstrom, B. A. (2003). Edge Sets: An Effective Evolutionary Coding of Spanning Trees, IEEE Transaction on Evolutionary Computation, 7(3), 225–239.

    Article  Google Scholar 

  39. Xue, G. (2003). Minimum-cost QoS multicast & unicast routing in communication networks, IEEE Transactions on Communication, 51(5), 817–824.

    Article  Google Scholar 

  40. Atiqullah, M. M. & Rao, S. S. (1993). Reliability optimization of communication networks using simulated annealing, Microelectronics & Reliability, 33, 1303–1319.

    Article  Google Scholar 

  41. Baker, J. (1987). Adaptive selection methods for genetic algorithms, Proceedings of 2th International Conference on Genetic Algorithms, 100–111.

    Google Scholar 

  42. Ball. M. O. & Provan, J. S. (1983). Calculating bounds on reachability and connectedness in stochastic networks, Networks, 13, 253–278.

    Article  MathSciNet  Google Scholar 

  43. Beltran, H. F. D. & Skorin-Kapov, D, (1994). On minimum cost isolated failure immune networks, Telecommunication Systems, 3, 183–200.

    Article  Google Scholar 

  44. Bertsekas, D. & Gallager, R. (1992). Data Networks, 2nd Edition, Prentice-Hall, New Jersey.

    MATH  Google Scholar 

  45. Charnes, A. & Cooper, W. W. (1959). Chance-constrained programming, Management Science, 6(1), 73–79.

    MATH  MathSciNet  Google Scholar 

  46. Coan, B. A., Leland, W. E., Vecchi, M. P., Wwinrib, A. & Wu, L. T. (1991). Using distributed topology update and preplanned configurations to achieve trunk network survivability, IEEE Transactions on Reliability, 40(4), 404–416.

    Article  Google Scholar 

  47. Dutta, A. & Mitra, S. (1993). Integrating heuristic knowledge and optimization models for communication network design, IEEE Transactions on Knowledge Data Engineering, 5(6), 999–1017.

    Article  Google Scholar 

  48. Gavish, B. (1992). Topological design of computer communication network - The overall design problems, European Journal of Operational Research, 58, 149–172.

    Article  MATH  Google Scholar 

  49. Gen, M. & Cheng, R. (2000). Genetic Algorithms & Engineering Optimization, John Wiley & Sons.

    Google Scholar 

  50. Gen, M., Ida. K. & Kim, J. R. (1998). A spanning tree-based genetic algorithm for bicriteria topological network design, Proceedings of the 1998 Congress on Evolutionary Computation, 15–20.

    Google Scholar 

  51. Glover, F., Lee, M. & Ryan, J. (1991). Least-cost network topology design for a new service: an application of a tabu search, Annals of Operations Research, 33, 351–362.

    Article  MATH  Google Scholar 

  52. Jan, R. H. (1993). Design of reliable networks, Computers & Operations Research, 20, 25–34.

    Article  MATH  MathSciNet  Google Scholar 

  53. Jan, R. H., Hwang, F. J. & Chen, S. T. (1994). Topological optimization of a communication network subject to reliability constraint, IEEE Transactions on Reliability, 42, 63–70.

    Google Scholar 

  54. Kershenbaum, A., Kermani, P. & Grover, G. A. (1991). MENTOR: An algorithm for mesh network topological optimization & routing, IEEE Transactions on Communications, 39(4), 503–513.

    Article  Google Scholar 

  55. Koh, S. J. & Lee, C. Y. (1995). A tabu search for the survivable fiber optic communication network design, Computers & Industrial Engineering, 28, 689–700.

    Article  Google Scholar 

  56. Liu, B. (1997). Dependent-chance programming: a class of stochastic optimization, Computers and Mathematics with Applications, 34(12), 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  57. Newport, K. T. & Varshney, P. K. (1991). Design of survival communications networks under performance constraints, IEEE Transactions on Reliability, 40(4), 443–440.

    Article  Google Scholar 

  58. Pierre, S., Hyppolite, M.-A., Bourjolly, J.-M. & Dioume, O. (1995). Topological design of computer communication networks using simulated annealing, engineering Applications of Artificial Intelligence, 8, 61–69.

    Article  Google Scholar 

  59. Pierre, S. & Elgibaoui, A. (1997). A tabu search approach for designing computer-network topologies with unreliable components, IEEE Transactions on Reliability, 46(2), 350–359.

    Article  Google Scholar 

  60. Rose, C. (1992). Low mean internodal distance network topologies and simulated annealing, IEEE Transactions on Communications, 40(8), 1319–1326.

    Article  Google Scholar 

  61. Schwartz, M. & Stern, T. E. (1980). Routing techniques used in computer communication networks, IEEE Transactions on Communications, COM-28(4), 539–552.

    Article  Google Scholar 

  62. Sykes, E. A. & White, C. C. (1985). Specifications of a knowledge system for packet-switched data network topological design, Proceedings of Expert Systems Government Symposium, Mc Lean, VA, 102–110.

    Google Scholar 

  63. Tomy, M. J. & Hoang, D. B. (1987). Joint optimization of capacity and flow assignment in a packet-switched communications network, IEEE Transactions on Communications, COM-35(2), 202–209.

    Google Scholar 

  64. Venetsanopoulos, N. & Singh, I. (1986). Topological optimization of communication networks subject to reliability constraints, Problem of Control & Information Theory, 15, 63–78.

    MATH  Google Scholar 

  65. Yeh, M.-S., Lin, J.-S. & Yeh, W.-C. (1994). A new Monte Carlo method for estimating network reliability, Proceedings of the 16th International Conference on Computers & Industrial Engineering, 723–726.

    Google Scholar 

  66. Yun, Y., Gen, M. & Seo, S. (2003). Various hybrid methods based on genetic algorithm with fuzzy logic controller, Journal of Intelligent Manufacturing, 14, 401–419,

    Article  Google Scholar 

  67. Lin, L. & Gen, M. (2007). An evolutionary algorithm for improvement of QoS of next generation network in dynamic environment, Artificial Neural Networks In Engineering, St. Louis, USA.

    Google Scholar 

  68. Blake, S. et. al., (1998). An Architecture for Differentiated Services, RFC 2475. [Online].Available :ftp://ftp.isi.edu/in-notes/rfc2475.txt

    Google Scholar 

  69. Braden, R., Clark, D. & Shenker, S. (1994). Integrated Services in the Internet Architecture: an Overview, RFC 1633. http://www.ietf.org/rfc/rfc1633.txt

    Google Scholar 

  70. Callon, R., et. al., (1999). A Framework for Multiprotocol Label Switching, draft-ietf-mplsframework-05.txt.

    Google Scholar 

  71. ITU-T, [Online]. Available: http://www.itu.int/ITU-T/studygroups/com13/ngn2004/ working definition.html

    Google Scholar 

  72. Sun, W. (1999). QoS/Policy/Constraint Based Routing, Technical Report, Ohio State University, [Online].Available: http://www.cse.wustl.edu/ jain/cis788-99/qos routing/index.html.

    Google Scholar 

  73. Lin, L & Gen, M. (2006). A self-control genetic algorithm for reliable communication network design, Proceeding of IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006.

    Google Scholar 

  74. Aggarwal, K. K. Chopra, Y. C. & Bajwa, J. S. (1982). Reliability evaluation by network decomposition, IEEE Transaction on Reliability, R-31, 355–358.

    Article  Google Scholar 

  75. Srivaree-ratana, C., Konak, A. & Smith, A. E. (2002). Estimation of All-terminal Netork Reliability Using an Artificial Neural Network, Computers & Operations Research, 29, 849– 868.

    Article  MATH  MathSciNet  Google Scholar 

  76. Altiparmak, F., & Bulgak, A. A. (2002). Optimization of Buffer Sizes in Aaaembly Systems Using Intelligent Techniques, proceedings of the 2002 Winter Simulation Conferene, 1157– 1162.

    Google Scholar 

  77. Kumar, A., Pathak, R. M. & Gupta, Y. P. (1995). Genetic algorithm based reliability optimization for computer network expansion, IEEE Transaction on Reliability, 44, 63–72.

    Article  Google Scholar 

  78. Davis, L., Orvosh, D., Cox, A. & Qui, Y. (1993). A genetic algorithm for survivable network design, Proceeding of 5th International Conference on Genetic Algorithms, 408–415.

    Google Scholar 

  79. Abuali, F. N., Schoenefeld, D. A. & Wainwright, R. L. (1994). Terminal assignment in a communications network using genetic algorithms, Proceeding of ACM Computer Science Conference, 74–81.

    Google Scholar 

  80. Abuali, F. N., Schoenefeld, D. A. & Wainwright, R. L. (1994). Designing telecommunications networks using genetic algorithms and probabilistic minimum spanning trees, Proceeding of 1994 ACM Symposium Applied Computing, 242–246.

    Google Scholar 

  81. Walters, G. A. & Smith, D. K. (1995). Evolutionary design algorithm for optimal layout of tree networks, Engineering Optimization, 24, 261–281.

    Article  Google Scholar 

  82. Deeter, D. L. & Smith, A. E. (1997). Heuristic optimization of network design considering all-terminal reliability, in Proceeding of Reliability & Maintainability Symposium, 194–199.

    Google Scholar 

  83. Colbourn, C. J. (1987). The Communication of Network Reliability, Oxford University Press.

    Google Scholar 

  84. Gen, M. & Cheng, R. W. (1997). Genetic Algorithms and Engineering Design, New York: John Wiley & Sons.

    Google Scholar 

  85. Altiparmak, F., Gen, M., Dengiz, B. & Smith, A. E. (2004). A network-based genetic algorithm for design of communication networks, Journal of Society of Plant Engineers Japan, 15, 4, 184-190.

    Google Scholar 

  86. Raidl, G. (2000). An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem, Proceeding of Congress on Evolutionary Computation, 1, 104-111.

    Google Scholar 

  87. Chou, H., Premkumar, G. & Chu, C. (2001). Genetic algorithms for communications network design - an empirical study of the factors that influence performance, IEEE Transaction on Evolutionary Computation, 5(3), 236-249.

    Article  Google Scholar 

  88. Julstrom, B. (2003). A permutation-coded evolutionary algorithm for the bounded-diameter minimum spanning tree problem, Proceeding of Genetic & Evolutionary Computation Conference, 2-7.

    Google Scholar 

  89. Yun, Y. S. & Gen, M. (2003). Performance Analysis of Adaptive Genetic Algorithms with Fuzzy Logic & Heuristics, Fuzzy Optimization and Decision Making, 2(2), 161-175.

    Article  MathSciNet  Google Scholar 

  90. Kim, J. R. & Lee, J.U. (2007). Hierarchical spanning tree network design with nash genetic algorithm, Computers & Industrial Engineering, Submitted.

    Google Scholar 

  91. Sim, K. B., Ki, J. Y., & Lee, D. W. (2002). Optimization of Multi-objective Function based on the Game Theory and Co-evolutionary Algorithm, Journal of Fuzzy Logic and Intelligent Systems, 12(6), 491-496 (in Korean).

    Google Scholar 

  92. Sefrioui, M., & Periaux, J. (2000). Nash Genetic Algorithms: Examples and Applications, Proceedings on IEEE Congress on Evolutionary Computation, 509-516.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

(2008). Communication Network Models. In: Network Models and Optimization. Decision Engineering. Springer, London. https://doi.org/10.1007/978-1-84800-181-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-181-7_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-180-0

  • Online ISBN: 978-1-84800-181-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics